Abstract
Zeolites can be extensively employed in agricultural activities because they improve soil properties such as infiltration rates, saturated hydraulic conductivity, water holding capacity, and cation exchange capacity. Natural and synthetic zeolites can efficiently hold water. Zeolites are also believed to have the ability to lose and gain water reversibly, without changing their crystal structure. In the present study, several laboratory tests were carried out using: (i) zeolite synthesized from coal fly ash (a waste product from burning coal in thermoelectric power plants), (ii) a silty loam soil, typically found in Southern Italy, and (iii) sunflower as a reference plant. The selected soil was amended with different percentages of zeolite (1, 2, 5, and 10%) and the effects of the synthetic mineral addition on the hydrophysical properties of the soil and plant growth were evaluated. The results indicated that soil–zeolite mixtures retained water more efficiently by pore radius modification. However, this causes a variation in the range of plant-available water towards higher soil humidity values, as the amount of added zeolite increases. These data confirm that zeolite addition modifies the selected hydrophysical properties of the soil with the effect of decreasing the soil drainage capacity, making the soil less habitable for plant growth.
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献