In Vitro and In Vivo Biocontrol of Tomato Fusarium Wilt by Extracts from Brown, Red, and Green Macroalgae

Author:

Mostafa Yasser S.,Alamri Saad A.,Alrumman Sulaiman A.ORCID,Hashem MohamedORCID,Taher Mostafa A.,Baka Zakaria A.

Abstract

Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (FOL) in tomatoes is globally recognized as one of the most significant tomato diseases, both in fields and in greenhouses. Macroalgae contain a diversity of bioactive complexes. This research was carried out to assess the value of the extracts from three macroalgae (Sargassum dentifolium belongs to Phaeophyta, Gracilaria compressa belongs to Rhodophyta, and Ulva lactuca belongs to Chlorophyta) against wilt disease in tomato plants. The fungal pathogen was isolated from diseased tomato plants growing in several parts of Saudi Arabia. Isolates of the pathogen were identified by morphological and molecular methods. Three organic solvents, in addition to water, were used for extraction to assess the effect of reducing FOL hyphal growth on potato dextrose agar (PDA). Radial reductions in pathogen hyphal growth were seen with all of the solvent and water extracts, but the three macroalgae methanol extracts that were tested showed the greatest reduction in pathogen hyphal growth. The total phenol content of the S. dentifolium extract was higher than that of the other two macroalgae. The phenolic compounds showed variability in all of the extracts that were identified and calculated by high-performance liquid chromatography (HPLC). Phloroglucinol (7.34 mg/g dry weight), vanillic acid (7.28 mg/g dry weight), and gallic acid (6.89 mg/g dry weight) were the phenolic compounds with the highest concentrations in the S. dentifolium, G. compressa, and U. lactuca extracts, respectively. The mycelium of FOL treated with a crude macroalgae extract of tested at 100 µg/mL was examined with a scanning electron microscope. The results showed an obvious difference between the extract-treated and untreated hyphae. The extract-treated hyphae collapsed and bruised, as well as; empty and dead. In the greenhouse experiment, S. dentifolium powder was used to evaluate its effect on disease decline. It led to a decrease in disease severity of 40.8%. The highest total yield (560.8 g) was obtained from the plants treated with S. dentifolium powder. We recommend the use of macroalgae extracts to combat fungal phytopathogens. Because chemical fungicides are extremely toxic to humans and the environment, macroalgae extracts are a good alternative that can be widely and safely used in the field.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference67 articles.

1. Occurrence and distribution of tomato seed‐borne mycoflora in S audi A rabia and its correlation with the climatic variables

2. Food and Agriculture Databasehttps://www.fao.org/faostat

3. Trichoderma asperellum strains confer tomato protection and induce its defense-related genes against the Fusarium wilt pathogen

4. Biofungicides as an alternative for tomato Fusarium crown and root rot control;Hibar;Tunis. J. Plant Prot.,2006

5. Plant diseases and their management in organic agriculture;Finckh,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3