Greenhouse Gas Emissions from Cut Grasslands Renovated with Full Inversion Tillage, Shallow Tillage, and Use of a Tine Drill in Nasu, Japan

Author:

Mori Akinori

Abstract

To restore the productivity of a deteriorated sward due to weed invasion, renovation (re-sowing) is necessary. However, the renovation method used can affect the sward’s greenhouse gas (GHG) emissions and herbage yield. This study compared the effects of renovation using full inversion tillage (F), shallow tillage (S), or a tine drill (T) on the GHG emissions and herbage yield of a grassland in Nasu, Japan. Two adjacent grasslands were renovated in September 2015 (year 1) and 2016 (year 2). In each year, F, S, and T plots (5 m × 20 m each) were arranged in a randomized complete block design with four replications and then orchardgrass (Dactylis glomerata L.) was seeded. All plots received 40 kg-N ha−1 for renovation and 190 kg-N ha−1 y−1 the following year. Carbon balance (i.e., the difference between C input through crop residue and C output through heterotrophic respiration), methane (CH4) and nitrous oxide (N2O) emissions, and herbage yield were measured over a period of 411 or 412 days. Cumulative N2O emissions were significantly smaller from F and S plots than from T plots, however, there was no significant difference in the sum of GHG emissions (i.e., C balance plus cumulative CH4 and N2O emissions) among F, S, and T plots. The cumulative total herbage yields of the F, S, and T plots did not differ significantly from each other. Consequently, the GHG intensity—i.e., the sum of GHG emissions per cumulative total herbage yield—was not significantly different among the F, S, and T plots.

Funder

Ministry of Agriculture, Forestry and Fisheries

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference39 articles.

1. Invasion of rhizomatous grasses on timothy grassland in Hokkaido;Deguchi;Jpn. J. Grassl. Sci.,2016

2. Studies on grassland acidification caused by fertilizer application and its effects on grass growth;Hojito;Rep. Hokkaido Prefect. Agric. Exp. Stn.,1994

3. Grassland renovation has important consequences for C and N cycling and losses

4. Evaluation of global warming effects to cool season grass productivity with models;Tarumi;J. Jpn. Agric. Sys. Soc.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3