Abstract
The objective of this study was to detect the historical dry matter yield (DMY) trend and to evaluate the effects of heavy rainfall events on the observed DMY trend of whole crop maize (WCM, Zea mays L.) using time-series analysis in Suwon, Republic of Korea. The climatic variables corresponding to the seeding to harvesting period, including the growing degree days, mean temperature, etc., of WCM along with the DMY data (n = 543) during 1982–2011, were used in the analysis. The DMY trend was detected using Autoregressive Integrated Moving Average with the explanatory variables (ARIMAX) form of time-series trend analysis. The optimal DMY model was found to be ARIMAX (1, 1, 1), indicating that the DMY trend follows the mean DMY of the preceding one year and the residual of the preceding one year with an integration level of 1. Furthermore, the SHGDD and SHHR were determined to be the main variables responsible for the observed trend in the DMY of WCM. During heavy rainfall events, the DMY was found to be decreasing by 4745.27 kg/ha (p < 0.01). Our analysis also revealed that both the intensity and frequency of heavy rainfall events have been increasing since 2005. The forecasted DMY indicates the potential decrease, which is expected to be 11,607 kg/ha by 2045. This study provided us evidence for the correlation between the DMY and heavy rainfall events that opens the way to provide solutions for challenges that summer forage crops face in the Republic of Korea.
Subject
Plant Science,Agronomy and Crop Science,Food Science
Reference29 articles.
1. Intergovernmental Panel on Climate Changehttps://archive.ipcc.ch/report/ar5/syr/
2. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of Intergovernmental Panel on Climate Change,2008
3. Estimating corn yield response models to predict impacts of climate change;Dixon;J. Agric. Res. Econ.,1994
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献