Novel Hybrid Statistical Learning Framework Coupled with Random Forest and Grasshopper Optimization Algorithm to Forecast Pesticide Use on Golf Courses

Author:

Grégoire GuillaumeORCID,Fortin Josée,Ebtehaj IsaORCID,Bonakdari Hossein

Abstract

Golf course maintenance requires the use of several inputs, such as pesticides and fertilizers, that can be harmful to human health or the environment. Understanding the factors associated with pesticide use on golf courses may help golf-course managers reduce their reliance on these products. In this study, we used a database of about 14,000 pesticide applications in the province of Québec, Canada, to develop a novel hybrid machine learning approach to predict pesticide use on golf courses. We created this proposed model, called RF-SVM-GOA, by coupling a support vector machine (SVM) with random forest (RF) and the grasshopper optimization algorithm (GOA). We applied RF to handle the wide range of datasets and GOA to find the optimal SVM settings. We considered five different dependent variables—region, golf course ID, number of holes, year, and treated area—as input variables. The experimental results confirmed that the developed hybrid RF-SVM-GOA approach was able to estimate the active ingredient total (AIT) with a high level of accuracy (R = 0.99; MAE = 0.84; RMSE = 0.84; NRMSE = 0.04). We compared the results produced by the developed RF-SVM-GOA model with those of four tree-based techniques including M5P, random tree, reduced error pruning tree (REP tree), and RF, as well as with those of two non-tree-based techniques including the generalized structure of group method of data handling (GSGMDH) and evolutionary polynomial regression (EPR). The computational results showed that the accuracy of the proposed RF-SVM-GOA approach was higher, outperforming the other methods. We analyzed sensitivity to find the most effective variables in AIT forecasting. The results indicated that the treated area is the most effective variable in AIT forecasting. The results of the current study provide a method for increasing the sustainability of golf course management.

Funder

Quebec Turfgrass Research Foundation

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forecasting Pesticide Use on Golf Courses by Integration of Deep Learning and Decision Tree Techniques;Agriculture;2023-05-30

2. The importance of open data describing prey item species lists for endangered species;Ecological Solutions and Evidence;2023-04

3. Self-adaptive evolutionary of non-tuned neural network—coding and implementation;Machine Learning in Earth, Environmental and Planetary Sciences;2023

4. Online sequential nontuned neural network—coding and implementation;Machine Learning in Earth, Environmental and Planetary Sciences;2023

5. Non-tuned single-layer feed-forward neural network learning machine—concept;Machine Learning in Earth, Environmental and Planetary Sciences;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3