Information Perception Method for Fruit Trees Based on 2D LiDAR Sensor

Author:

Wang Yong,Geng Changxing,Zhu Guofeng,Shen Renyuan,Gu Haiyang,Liu Wanfu

Abstract

To solve the problem of orchard environmental perception, a 2D LiDAR sensor was used to scan fruit trees on both sides of a test platform to obtain their position. Firstly, the two-dimensional iterative closest point (2D-ICP) algorithm was used to obtain the complete point cloud data of fruit trees on both sides. Then, combining the lightning connection algorithm (LAPO) and the density-based clustering algorithm (DBSCAN), a fruit tree detection method based on density-based lightning connection clustering (LAPO-DBSCAN) was proposed. After obtaining the point cloud data of fruit trees on both sides of the test platform using the 2D-ICP algorithm, the LAPO-DBSCAN algorithm was used to obtain the position of fruit trees. The experimental results show that the positive detection rate was 96.69%, the false detection rate was 3.31%, and the average processing time was 1.14 s, verifying the reliability of the algorithm. Therefore, this algorithm can be used to accurately find the position of fruit trees, meaning that it can be applied to orchard navigation in a later stage.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3