Abstract
Soil nutrients are a vital part of soil fertility and other environmental factors. Soil testing is an efficient tool used to evaluate the existing nutrient levels of soil and aid to compute the appropriate quantity of soil nutrients depending upon the fertility level and crop requirements. Since the conventional soil nutrient testing models are not feasible in real time applications, an efficient soil nutrient, and potential of hydrogen (pH) prediction models are essential to improve overall crop productivity. In this aspect, this paper aims to design an intelligent soil nutrient and pH classification using weighted voting ensemble deep learning (ISNpHC-WVE) technique. The proposed ISNpHC-WVE technique aims to classify the existence of nutrients and pH levels exist in the soil. In addition, three deep learning (DL) models namely gated recurrent unit (GRU), deep belief network (DBN), and bidirectional long short term memory (BiLSTM) were used for the predictive analysis. Moreover, a weighted voting ensemble model was employed which allows a weight vector on every DL model of the ensemble depending upon the attained accuracy on every class. Furthermore, the hyperparameter optimization of the three DL models was performed using manta ray foraging optimization (MRFO) algorithm. For investigating the enhanced predictive performance of the ISNpHC-WVE technique, a comprehensive simulation analysis takes place to examine the pH and soil nutrient classification performance. The experimental results showcased the better performance of the ISNpHC-WVE technique over the recent techniques with accuracy of 0.9281 and 0.9497 on soil nutrient and soil pH classification. The proposed model can be utilized as an effective tool to improve productivity in agriculture by proper soil nutrient and pH classification.
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献