Division of Labor among Worker Bees Is Associated with the Lipidomic Plasticity in Their Brains

Author:

Zhang XiaojingORCID,Hao YueORCID,Niu Qingsheng,Chen Yanping,Xia Zhenyu,Xie Zihan,Zhao YazhouORCID,Kong Lingjie,Peng Wenjun

Abstract

The division of labor is a dominant characteristic of honeybees and is accompanied by behavioral specialization and cognitive enhancement. As the central nervous system to control the labor-specific behaviors of honeybee, the brain is richest in lipid in terms of both diversity and abundance. In this study, an in-depth LC-MS/MS-based lipidomic method was applied to systematically characterize the brain lipid compositions of worker bees with three labor stages: newly emerged bee (NEB), nurse bee (NB), and forager bee (FB). A total number of 337 lipid species that assigned to 20 lipid classes were analyzed. The association of the brain lipidomes with the division of labors was suggested by the results of both the unsupervised and supervised multivariate pattern recognition analysis. More than 68% of the identified lipid species were found to be significantly changed in at least one comparison between NEB, NB, and FB. A total of 81 lipid species were identified as the potential labor-featured molecules with VIP > 1 and p-adj < 0.05. The labor-featured lipids of FA(18:2), FA(18:3), FA(26:0), PC(18:0_18:3), PS(18:1_18:1), SM(d38:1), CoQ10, and CoQ9, as well as their interactions with 12 behavior-related genes, including AmEST-6, AmFABP, AmE75, AmDGAT2, AmLSD1, AmNPC1, AmABCA1, AmNMDAR1, AmHTT, AmNOS, etc., were revealed by the further IPA analysis. These findings demonstrate for the first time that the brain lipidomes of worker bees are associated with the stable differences in their labors, which help understand the function of brain lipids on the labor-dependent behaviors of honeybees.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3