Research on Multiobjective Optimization Algorithm for Cooperative Harvesting Trajectory Optimization of an Intelligent Multiarm Straw-Rotting Fungus Harvesting Robot

Author:

Yang ShuzhenORCID,Jia Bocai,Yu Tao,Yuan Jin

Abstract

In view of the difficulties of fruit cluster identification, the specific harvesting sequence constraints of aggregated fruits, and the balanced harvesting task assignment for the multiple arms with a series-increasing symmetric shared (SISS) region, this paper proposes a multi-objective optimization algorithm, which combines genetic algorithm (GA) and ant colony optimization (ACO) stepwise, to optimize the multiarm cooperative harvesting trajectory of straw-rotting fungus to effectively improve the harvesting efficiency and the success rate of non-destructive harvesting. In this approach, firstly, the multiarm trajectory optimization problem is abstracted as a multiple travelling salesman problem (MTSP). Secondly, an improved local density clustering algorithm is designed to identify the cluster fruits to prepare data for harvesting aggregated fruits in a specific order later. Thirdly, the MTSP has been decomposed into M independent TSP (traveling salesman problem) problems by using GA, in which a new DNA (deoxyribonucleic acid) assignment rule is designed to resolve the problem of the average distribution of multiarm harvesting tasks with the SISS region. Then, the improved ant colony algorithm, combined with the auction mechanism, is adopted to achieve the shortest trajectory of each arm, which settles the difficulty that the clustered mature fruits should be harvested in a specified order. The experiments show that it can search for a relatively stable optimal solution in a relatively short time. The average harvesting efficiency is up to 1183 pcs/h and the average harvesting success rate is about 97%. Therefore, the proposed algorithm can better plan the harvesting trajectory for multiarm intelligent harvesting, especially for areas with many aggregated fruits.

Funder

Shanghai Agriculture Applied Technology Development Program

Major Scientific and Technological Innovation Project of Shandong Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference46 articles.

1. Green prevention and control technology of straw rotting fungus;Guo;Edible Med. Mushrooms,2019

2. Influence of Mushroom Strains and Population Density on the Performance of a Robotic Harvester

3. Considerations on the evolution of mushrooms harvesting systems;Schiau;Res. Sci. Today,2013

4. Initial experiments in robotic mushroom harvesting

5. AE—Automation and Emerging Technologies

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3