Crop Root Rows Detection Based on Crop Canopy Image

Author:

Liu Yujie1ORCID,Guo Yanchao2,Wang Xiaole13,Yang Yang13,Zhang Jincheng1,An Dong1,Han Huayu1,Zhang Shaolin1,Bai Tianyi1

Affiliation:

1. School of Engineering, Anhui Agricultural University, Hefei 230036, China

2. State Key Laboratory of Intelligent Agricultural Power Equipment, Luoyang 471000, China

3. Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Wuhu 241000, China

Abstract

Most of the current crop row detection algorithms focus on extracting crop canopy rows as location information. However, for some high-pole crops, due to the transverse deviation of the position of the canopy and roots, the agricultural machinery can easily cause the wheel to crush the crop when it is automatically driven. In fact, it is more accurate to use the crop root row as the feature for its location calibration, so a method of crop root row detection is proposed in this paper. Firstly, the ROI (region of interest) of the crop canopy is extracted by a semantic segmentation algorithm, then crop canopy row detection lines are extracted by the horizontal strip division and the midpoint clustering method within the ROI. Next, the Crop Root Representation Learning Model learns the Representation of the crop canopy row and crop root row to obtain the Alignment Equation. Finally, the crop canopy row detection lines are modified according to the Alignment Equation parameters to obtain crop root row detection lines. The average processing time of a single frame image (960 × 540 pix) is 30.49 ms, and the accuracy is 97.1%. The research has important guiding significance for the intelligent navigation, tilling, and fertilization operation of agricultural machinery.

Funder

National key research and development of China plan sub-topic

National Natural Science Foundation of China project

Anhui Province university outstanding youth project

National key laboratory open of China project

Anhui Province key research and development plan project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3