Classification of Apple Color and Deformity Using Machine Vision Combined with CNN

Author:

Qiu Dekai1,Guo Tianhao1,Yu Shengqi1,Liu Wei1ORCID,Li Lin23,Sun Zhizhong45,Peng Hehuan1,Hu Dong123ORCID

Affiliation:

1. College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China

2. School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China

3. Key Laboratory of Modern Agricultural Equipment and Technology, Jiangsu University, Ministry of Education, Zhenjiang 212013, China

4. College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China

5. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China

Abstract

Accurately classifying the quality of apples is crucial for maximizing their commercial value. Deep learning techniques are being widely adopted for apple quality classification tasks, achieving impressive results. While existing research excels at classifying apple variety, size, shape, and defects, color and deformity analysis remain an under-explored area. Therefore, this study investigates the feasibility of utilizing convolutional neural networks (CNN) to classify the color and deformity of apples based on machine vision technology. Firstly, a custom-assembled machine vision system was constructed for collecting apple images. Then, image processing was performed to extract the largest fruit diameter from the 45 images taken for each apple, establishing an image dataset. Three classic CNN models (AlexNet, GoogLeNet, and VGG16) were employed with parameter optimization for a three-category classification task (non-deformed slice–red apple, non-deformed stripe–red apple, and deformed apple) based on apple features. VGG16 achieved the best results with an accuracy of 92.29%. AlexNet and GoogLeNet achieved 91.66% and 88.96% accuracy, respectively. Ablation experiments were performed on the VGG16 model, which found that each convolutional block contributed to the classification task. Finally, prediction using VGG16 was conducted with 150 apples and the prediction accuracy was 90.50%, which was comparable to or better than other existing models. This study provides insights into apple classification based on color and deformity using deep learning methods.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Program of the Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education

Research Project of Zhejiang A&F University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3