OsHSP 17.9, a Small Heat Shock Protein, Confers Improved Productivity and Tolerance to High Temperature and Salinity in a Natural Paddy Field in Transgenic Rice Plants

Author:

Do Jeong-Mi12,Kim Hee-Jin12,Shin Sun-Young1,Park Seong-Im12,Kim Jin-Ju12,Yoon Ho-Sung123

Affiliation:

1. Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea

2. BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea

3. Advanced Bio-Resource Research Center, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

Various abiotic stress factors, such as high temperatures and salinity, have a significant impact on the development and growth of crop plants and ultimately impact crop yield. Previous studies have reported that overexpression of heat-shock-protein (HSP) genes in transgenic plants can enhance stress tolerance under controlled conditions in laboratories and greenhouses. Despite the significance of multiple environmental stressors on plants in natural paddy fields, there is still a lack of research regarding the contribution of HSP genes to stress tolerance and crop yield. In this study, we cloned and characterized the function of OsHSP 17.9, an HSP gene from Oryza sativa, in rice plants grown under diverse conditions. Our results showed that overexpressing OsHSP 17.9 in rice plants enhanced the activity of antioxidant enzymes under high-temperature and salinity stresses. Moreover, transgenic rice plants overexpressing OsHSP 17.9 exhibited significantly improved adaptability after transplantation from greenhouses to natural paddy fields. In particular, OsHSP 17.9-overexpressing transgenic rice plants established improved agronomic traits and increased grain yields even under unfavorable natural-paddy-field conditions. These results suggest that OsHSP 17.9 transgenic plants can be a promising strategy for cultivating crops in adverse environmental conditions.

Funder

National Research Foundation of Korea

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3