Random Forest Modeling of Soil Properties in Saline Semi-Arid Areas

Author:

Suleymanov Azamat12ORCID,Gabbasova Ilyusya13ORCID,Komissarov Mikhail13ORCID,Suleymanov Ruslan13ORCID,Garipov Timur13ORCID,Tuktarova Iren2ORCID,Belan Larisa24

Affiliation:

1. Laboratory of Soil Science, Ufa Institute of Biology UFRC RAS, 450054 Ufa, Russia

2. Department of Environmental Protection and Prudent Exploitation of Natural Resources, Ufa State Petroleum Technological University, 450064 Ufa, Russia

3. Laboratory of Climate Change Monitoring and Carbon Ecosystems Balance, Ufa State Petroleum Technological University, 450064 Ufa, Russia

4. Department of Geology, Hydrometeorology and Geoecology, Ufa University of Science and Technology, 450076 Ufa, Russia

Abstract

The problem of salinization/spreading of saline soils is becoming more urgent in many regions of the world, especially in context of climate change. The monitoring of salt-affected soils’ properties is a necessary procedure in land management and irrigation planning and is aimed to obtain high crop harvest and reduce degradation processes. In this work, a machine learning method was applied for modeling of the spatial distribution of topsoil (0–20 cm) properties—in particular: soil organic carbon (SOC), pH, and salt content (dry residue). A random forest (RF) machine learning approach was used in combination with environmental variables to predict soil properties in a semi-arid area (Trans-Ural steppe zone). Soil, salinity, and texture maps; topography attributes; and remote sensing data (RSD) were used as predictors. The coefficient of determination (R2) and the root mean square error (RMSE) were used to estimate the performance of the RF model. The cross-validation result showed that the RF model achieved an R2 of 0.59 and an RMSE of 0.68 for SOM; 0.36 and 0.65, respectively, for soil pH; and 0.78 and 1.21, respectively for dry residue prediction. The SOC content ranged from 0.8 to 2.8%, with an average value of 1.9%; soil pH ranged from 5.9 to 8.4, with an average of 7.2; dry residue varied greatly from 0.04 to 16.8%, with an average value of 1.3%. A variable importance analysis indicated that remote sensing variables (salinity indices and NDVI) were dominant in the spatial prediction of soil parameters. The importance of RSD for evaluating saline soils and their properties is explained by their absorption characteristics/reflectivity in the visible and near-infrared spectra. Solonchak soils are distinguished by a salt crust on the land surface and, as a result, reduced SOC contents and vegetation biomass. However, the change in saline and non-saline soils over a short distance with mosaic structure of soil cover requires high-resolution RSD or aerial images obtained from unmanned aerial vehicle/drones for successful digital mapping of soil parameters. The presented results provide an effective method to estimate soil properties in saline landscapes for further land management/reclamation planning of degraded soils in arid and semi-arid regions.

Funder

Ministry of Education and Science of the Republic of Bashkortostan

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3