Abstract
This research is an outcome of the R&D activities of Ecodevelopment S.A. (steadily supported by the Hellenic Agricultural Organization—Demeter) towards offering precision farming services to rice growers. Within this framework, a new methodology for topdressing nitrogen prediction was developed based on machine learning. Nitrogen is a key element in rice culture and its rational management can increase productivity, reduce costs, and prevent environmental impacts. A multi-source, multi-temporal, and multi-scale dataset was collected, including optical and radar imagery, soil data, and yield maps by monitoring a 110 ha pilot rice farm in Thessaloniki Plain, Greece, for four consecutive years. RapidEye imagery underwent image segmentation to delineate management zones (ancillary, visual interpretation of unmanned aerial system scenes was employed, too); Sentinel-1 (SAR) imagery was modelled with Computer Vision to detect inundated fields and (through this) indicate the exact growth stage of the crop; and Sentinel-2 image data were used to map leaf nitrogen concentration (LNC) exactly before topdressing applications. Several machine learning algorithms were configured to predict yield for various nitrogen levels, with the XGBoost model resulting in the highest accuracy. Finally, yield curves were used to select the nitrogen dose maximizing yield, which was thus recommended to the grower. Inundation mapping proved to be critical in the prediction process. Currently, Ecodevelopment S.A. is expanding the application of the new method in different study areas, with a view to further empower its generality and operationality.
Subject
Plant Science,Agronomy and Crop Science,Food Science
Reference47 articles.
1. Diagnosis of Nitrogen Nutrition in Rice Leaves Influenced by Potassium Levels
2. Rice Nutrient Management in California;Williams,2010
3. Optimization of fertilization recommendation in Greek rice fields using precision agriculture;Iatrou;Agric. Econ. Rev.,2018
4. PROCESS OF DENITRIFICATION IN FLOODED RICE SOILS
5. Nitrogen Transformations
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献