A Biotreatment Effect on Dynamics of Cattle Manure Composition and Reduction of Ammonia Emissions from Agriculture

Author:

Naujokienė VilmaORCID,Bagdonienė Indrė,Bleizgys Rolandas,Rubežius Mantas

Abstract

Increasing control of localized air pollution caused by ammonia is identified, including limiting the maximum emissions from agriculture. In EU countries, the agricultural sector is the source of above 94% of the total anthropogenic emissions of ammonia, of which manure removal systems account for 56%. In view of the reason for the agricultural waste management by formation and propagation of ammonia gas—the bacterial and enzymatic degradation of organic components in excrement—it is important to evaluate the effect of biotreatment of 100% natural composition (contain Azospirillum sp. (N) (number of bacterial colonies −1 × 109 cm−3), Frateuria aurentia (K) (number of bacterial colonies −1 × 109 cm−3), Bacillus megaterium (P) (bacterial colony count −1 × 109 cm−3), seaweed extract (10% by volume), phytohormones, auxins, cytokinin, gibberellins, amino acids, and vitamins) on the emission of ammonia from organic waste. Experimental research was carried out to determine significant differences of dynamics in agrochemical composition of manure, NH3 gas emissions, depending on biotreatment, manure storage duration, and ventilation intensity of the barn. Gas emission was obtained via laser gas analyzer using a spectroscopic method in a specially reconstructed wind tunnel chamber. About 32% manure biotreatment effect on reduction of ammonia emissions was established. The maximum effect of the biodegradable compound on gaseous propagation was assessed after 28–35 days of manure storage and proved all biotreatment effect time of 49–56 days. By the saving nitrogen loses priority, manure biotreatment could reduce nitrogen losses from manure and inorganic N fertilizers by approximately 5%, also could reduce approximately 5911.1 thousand tones nitrogen fertilizer in the world and reduce approximately 5.5 Eur ha−1. “The biotreatment impact assessment confirmed that proper application of biotreatment can reduce ammonia emissions from manure and environmental pollution from agriculture”.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference43 articles.

1. Directive of the European Parliament and of the Council (ES)https://eur-lex.europa.eu/legal-content/LT/TXT/PDF/?uri=CELEX:32018L0410&from=EN

2. EU Action against Climate Change Leading Global Action to 2020 and Beyond,2008

3. An Overview of the Control of Bacterial Pathogens in Cattle Manure;Christy;Int. J. Environ. Res. Public Health,2016

4. The impact of the Nitrates Directive on nitrogen emissions from agriculture in the EU-27 during 2000–2008

5. Environmental Implementation Review 2019: A Europe That Protects Its Citizens and Enhances Their Quality of Lifehttps://ec.europa.eu/transparency/regdoc/rep/1/2019/EN/COM-2019-149-F1-EN-MAIN-PART-1.PDF

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3