Shading at the Booting Stage Improved the Grain Quality of Hybrid Rice Due to Reduced Spikelet Production

Author:

Shang Liyan1,Liu Zichen1,Ye Jiayu1,Sheng Tian1,Li Ruijie1,Deng Jun1,Liu Ke1ORCID,Tian Xiaohai1,Zhang Yunbo1,Huang Liying1

Affiliation:

1. MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China

Abstract

As a growing abiotic stress, light deficient conditions seriously affect the yield and quality of rice. However, few studies focus on the effects of shading on grain quality at the booting stage and the responses of different hybrid rice cultivars to shading. Field experiments involving four representative rice (Oryza sativa L.) cultivars across no shading (CK) and 40% shading at the booting (S) and grain filling stages (SS) were conducted in 2021 and 2022. Compared with CK, S reduced grain yield by 53.0% but increased the head rice rate by 11.4% averaged across varieties and years. The chalkiness degree (CD) and chalky grain percentage (CR) were reduced by 73.0% and 61.6% in S due to its 45.3% lower total spikelets m–2, 44.0% lower grain–leaf ratio and 23.5% lower dry weight spikelet production efficiency, compared with CK. The CD and CR in SS were 49.5% and 41.0% higher and HR was 7.1% lower than that in CK. Shading significantly reduced amylose content, peak viscosity and breakdown value, but increased protein content and setback value, and the effects of SS were greater than S. Y-liangyou900 and Liangyoupeijiu showed better milling quality, while Y-liangyou900 and Chuanyou6203 obtained a better appearance and eating quality than the other varieties under both S and SS. In conclusion, shading at the booting stage significantly improved the milling, appearance and nutritional quality, and did not reduce the cooking and eating quality, but led to a significant decline in the grain yield of hybrid rice. Moreover, Y-liangyou900 exhibited better rice quality but lower yield under shading treatments. Therefore, more attention needs to be focused on screening shade-tolerant varieties using both yield and quality to cope with climate change in the future.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3