Author:
Averitt Benjamin J.,Welbaum Gregory E.,Li Xiaoying,Prenger Elizabeth,Qin Jun,Zhang Bo
Abstract
Low phytic acid (LPA) soybean [Glycine max (L.) Merr] genotypes reduce indigestible PA in soybean seeds in order to improve feeding efficiency of mono- and agastric animals, but often exhibit low field emergence, resulting in reduced yield. In this study, four LPA soybean varieties with two different genetic backgrounds were studied to assess their emergence and yield characters under 12 seed treatment combinations including two broad-spectrum, preplant fungicides (i.e., ApronMaxx (mefenoxam: (R,S)-2-[(2,6-dimethylphenyl)-methoxyacetylamino]-propionic acid methyl ester; fludioxonil: 4-(2,2-difluoro-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile) and Rancona Summit (ipconazole: 2-[(4-chlorophenyl)methyl]-5-(1-methylethyl)-1-(1H-1,2,4-triazol-1-ylmethyl) cyclopentanol; metalaxyl: N-(methooxyacetyl)-N-(2,6-xylyl)-DL-alaninate)), osmotic priming, and MicroCel-E coating. Two normal-PA (NPA) varieties served as controls. Both irrigated and non-irrigated plots were planted in Blacksburg and Orange, Virginia, USA in 2014 and 2015. Results revealed that three seed treatments (fungicides Rancona Summit and ApronMaxx, as well as Priming + Rancona) significantly improved field emergence by 6.4–11.6% across all genotypes, compared with untreated seeds. Seed priming was negatively associated with emergence across LPA genotypes. Seed treatments did not increase the yield of any genotype. LPA genotypes containing mips or lpa1/lpa2 mutations, produced satisfactory emergence similar to NPA under certain soil and environmental conditions due to the interaction of genotype and environment. Effective seed treatments applied to LPA soybeans along with the successful development of LPA germplasm by soybean breeding programs, will increase use of LPA varieties by commercial soybean growers, ultimately improving animal nutrition while easing environmental impact.
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献