Evaluating Genotypes and Seed Treatments to Increase Field Emergence of Low Phytic Acid Soybeans

Author:

Averitt Benjamin J.,Welbaum Gregory E.,Li Xiaoying,Prenger Elizabeth,Qin Jun,Zhang Bo

Abstract

Low phytic acid (LPA) soybean [Glycine max (L.) Merr] genotypes reduce indigestible PA in soybean seeds in order to improve feeding efficiency of mono- and agastric animals, but often exhibit low field emergence, resulting in reduced yield. In this study, four LPA soybean varieties with two different genetic backgrounds were studied to assess their emergence and yield characters under 12 seed treatment combinations including two broad-spectrum, preplant fungicides (i.e., ApronMaxx (mefenoxam: (R,S)-2-[(2,6-dimethylphenyl)-methoxyacetylamino]-propionic acid methyl ester; fludioxonil: 4-(2,2-difluoro-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile) and Rancona Summit (ipconazole: 2-[(4-chlorophenyl)methyl]-5-(1-methylethyl)-1-(1H-1,2,4-triazol-1-ylmethyl) cyclopentanol; metalaxyl: N-(methooxyacetyl)-N-(2,6-xylyl)-DL-alaninate)), osmotic priming, and MicroCel-E coating. Two normal-PA (NPA) varieties served as controls. Both irrigated and non-irrigated plots were planted in Blacksburg and Orange, Virginia, USA in 2014 and 2015. Results revealed that three seed treatments (fungicides Rancona Summit and ApronMaxx, as well as Priming + Rancona) significantly improved field emergence by 6.4–11.6% across all genotypes, compared with untreated seeds. Seed priming was negatively associated with emergence across LPA genotypes. Seed treatments did not increase the yield of any genotype. LPA genotypes containing mips or lpa1/lpa2 mutations, produced satisfactory emergence similar to NPA under certain soil and environmental conditions due to the interaction of genotype and environment. Effective seed treatments applied to LPA soybeans along with the successful development of LPA germplasm by soybean breeding programs, will increase use of LPA varieties by commercial soybean growers, ultimately improving animal nutrition while easing environmental impact.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3