Genotype by Environment Interaction Analysis for Grain Yield and Yield Components of Summer Maize Hybrids across the Huanghuaihai Region in China

Author:

Yue HaiwangORCID,Gauch Hugh G.,Wei Jianwei,Xie Junliang,Chen Shuping,Peng Haicheng,Bu Junzhou,Jiang Xuwen

Abstract

Increasing the maize production capacity to ensure food security is still the primary goal of global maize planting. The purpose of this study was to evaluate genotypes with high yield and stability in summer maize hybrids grown in the Huanghuaihai region of China using additive main effects and multiplicative interaction (AMMI) analysis and best linear unbiased prediction (BLUP) technique. A total of 18 summer maize hybrids with one check hybrid were used for this study using a randomized complete block design (RCBD) with three replicates at 74 locations during two consecutive years (2018–2019). A three-way analysis of variance (ANOVA) and an AMMI analysis showed that genotype (G), environment (E), year (Y) and their interactions were highly significant (p < 0.001) except G × E × Y for all evaluated traits viz., grain yield (GY), ear length (EL), hundred seed weight (HSW) and E × Y for hundred seed weight. The first seven interaction principal components (IPCs) were highly significant and explained 81.74% of the genotype by environment interaction (GEI). By comparing different models, the best linear unbiased prediction (BLUP) was considered the best model for data analysis in this study. The combination of AMMI model and BLUP technology to use the WAASB (weighted average of absolute scores from the singular value decomposition of the matrix of BLUP for GEI effects generated by linear mixed model) index was considered promising for similar research in the future. Genotypes H321 and Y23 had high yield and good stability, and could be used as new potential genetic resources for improving and stabilizing grain yield in maize breeding practices in the Huanghuaihai region of China. Genotypes H9, H168, Q218, Y303 and L5 had narrow adaptability and only apply to specific areas. The check genotype Z958 had good adaptability in most environments due to its good stability, but it also needs the potential to increase grain yield. Significant positive correlations were also found between the tested agronomic traits.

Funder

Key Research and Development Projects of Hebei Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3