VineInspector: The Vineyard Assistant

Author:

Mendes JorgeORCID,Peres EmanuelORCID,Neves dos Santos FilipeORCID,Silva NunoORCID,Silva RenatoORCID,Sousa Joaquim JoãoORCID,Cortez IsabelORCID,Morais RaulORCID

Abstract

Proximity sensing approaches with a wide array of sensors available for use in precision viticulture contexts can nowadays be considered both well-know and mature technologies. Still, several in-field practices performed throughout different crops rely on direct visual observation supported on gained experience to assess aspects of plants’ phenological development, as well as indicators relating to the onset of common plagues and diseases. Aiming to mimic in-field direct observation, this paper presents VineInspector: a low-cost, self-contained and easy-to-install system, which is able to measure microclimatic parameters, and also to acquire images using multiple cameras. It is built upon a stake structure, rendering it suitable for deployment across a vineyard. The approach through which distinguishable attributes are detected, classified and tallied in the periodically acquired images, makes use of artificial intelligence approaches. Furthermore, it is made available through an IoT cloud-based support system. VineInspector was field-tested under real operating conditions to assess not only the robustness and the operating functionality of the hardware solution, but also the AI approaches’ accuracy. Two applications were developed to evaluate VineInspector’s consistency while a viticulturist’ assistant in everyday practices. One was intended to determine the size of the very first grapevines’ shoots, one of the required parameters of the well known 3–10 rule to predict primary downy mildew infection. The other was developed to tally grapevine moth males captured in sex traps. Results show that VineInspector is a logical step in smart proximity monitoring by mimicking direct visual observation from experienced viticulturists. While the latter traditionally are responsible for a set of everyday practices in the field, these are time and resource consuming. VineInspector was proven to be effective in two of these practices, performing them automatically. Therefore, it enables both the continuous monitoring and assessment of a vineyard’s phenological development in a more efficient manner, making way to more assertive and timely practices against pests and diseases.

Funder

Interreg VA España – Portugal

European Regional Development Fund

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3