Identification of the Citrus Superoxide Dismutase Family and Their Roles in Response to Phytohormones and Citrus Bacterial Canker

Author:

Yang Wen,Fu Jia,Huang Xin,Fan Jie,Qin Xiujuan,Yu Qiyuan,Zhang Chenxi,Xian Baohang,Chen Shanchun,He Yongrui,Li QiangORCID

Abstract

Superoxide dismutases (SODs) play critical roles in plants, especially in the maintenance of redox homeostasis. The response of SODs in Citrus (Citrus sinensis (L.) Osbeck) to citrus bacterial canker (CBC) infection were investigated. The CsSODs were identified, and their gene structures, phylogeny, conserved domains and motifs, predicted interactions, and chromosomal distribution were analyzed. CsSOD expression in response to stress-related plant hormones (salicylic acid, SA; methyl jasmonate, MeJA; and abscisic acid, ABA) and Xanthomonas citri subsp. citri (Xcc) infection were also investigated. Thirteen CsSODs were identified in C. sinensis, including four Fe/MnSODs and nine Cu/ZnSODs with typical functional domains. The CsSODs were distributed on chromosomes 3, 5, 7, and 8. Specific hormone-response motifs were identified in the gene promoter regions. Ten genes were induced by MeJA treatment, as shown by qRT-PCR, and were upregulated in the CBC-susceptible Wanjincheng citrus variety, while CsSOD06 and CsSOD08 were upregulated by ABA in both the Wanjincheng and the CBC-resistant Kumquat varieties. Xcc infection significantly altered the levels of most CsSODs. The overexpression of CsSOD06 and CsSOD08 resulted in increased hydrogen peroxide levels and SOD activity. Our findings highlight the significance of SOD enzymes in the plant response to pathogen infection and have a potential application for breeding CBC-tolerant citrus varieties.

Funder

Natural Science Foundation of Chongqing

Earmarked Funds for the China Agriculture Research System

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3