Working Mechanism and Parameter Optimization of a Crushing and Impurity Removal Device for Liquid Manure

Author:

Ma Biao,Chen Mingjiang,Wu Aibing,Fu Jingjing,Hu Zhichao,Xu Binxing

Abstract

Aiming to solve the problems of easy clogging and high energy consumption of multi-way fertilization devices for liquid manure, a crushing and impurity removal device for liquid manure was designed by combining the physical characteristics of liquid manure and impurities, and building the corresponding test bench. The proposed device could crush flexible impurities such as straw and filoplume and intercept hard impurities with high density. The main structural parameters of the device were determined according to the survey analysis and the theoretical design. The influences of cutter head shape, cutter edge angle, cutter shaft speed, and cutting clearance on the disqualification rate and energy consumption of straw crushing were obtained by a single-factor experiment. Furthermore, the Box–Behnken central composite design method of the response surface was employed to investigate the effects of the cutter shaft speed, cutting clearance, and cutter edge angle on the disqualification rate and energy consumption of straw crushing. In addition, the working parameters of the device were optimized by employing the response surface method. On this basis, the mathematical relationship model among the disqualification rate, energy consumption, and all influencing factors was established. The results show that the optimal combination of working parameters includes a cutter shaft speed of 312 r/min, a cutting clearance of 1.4 mm, and a cutter edge angle of 45°. From the prediction model, the predicted failure rate was 4.15%, and the predicted energy consumption was 47.53 J. The verification experiment was then performed under the optimal combination of working parameters. The obtained disqualification rate was 4.08% and the energy consumption was 47.56 J, which met the design and work requirements.

Funder

Jiangsu Modern Agricultural Machinery Equipment and Technology Demonstration and Promotion Project

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference26 articles.

1. The status of organic fertilizer industry and organic fertilizer resources in China;Du;Soil Fertil. Sci. China,2020

2. Research status of fertilizer utilization of livestock and poultry manure in China;Zhao;J. Chin. Agric. Mech.,2020

3. Composition analysis of particles filtered from biogas slurry by sieves with different mesh for sprinkling irrigation;Sheng;Trans. Chin. Soc. Agric. Eng.,2016

4. Analysis of the relationship between the development of liquid fertilization machinery and modern agriculture;Zhang;J. Chin. Agric. Mech.,2021

5. Performance and backwashing efficiency of disc and screen filters in microirrigation systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3