Co-Flowering Species Richness Increases Pollinator Visitation to Apple Flowers

Author:

Gilpin Amy-MarieORCID,Kobel Conrad,Brettell Laura E.ORCID,O’Brien Corey,Cook James M.,Power Sally A.

Abstract

Co-flowering plants can experience an array of interactions, ranging from facilitation to competition, the direction and strength of which are often dependent on the relative abundance and diversity of the plant species involved and the foraging behavior of their pollinators. Understanding interactions between plant–pollinator networks and how they change over time is particularly important within agricultural systems, such as apples, that flower en masse and that also contain non-crop co-flowering species both within the farm and the surrounding landscape. We determined the degree of overlap between pollinator networks on two varieties of apple (Granny Smith and Pink Lady) and co-flowering plant species within orchards and the wider vegetation matrix in two apple-growing regions (Orange and Bilpin) in Australia. We surveyed plant–pollinator interactions at key stages of the cropping cycle: before mass flowering; during king, peak and late blooms; and, finally, once apple flowering had finished. Overall, we found considerable overlap in the flower visitor assemblage on apples and co-flowering species within the orchard. The introduced honeybee (Apis mellifera) was the most frequent flower visitor to all three vegetation types at all times in Orange. However, in Bilpin, both a native stingless bee (Tetragonula carbonaria) and A. mellifera were highly frequent visitors, both on- and off-crop. Numerous native bees, flies and Lepidoptera also commonly visited apple and co-flowering species within orchards in both locations. We found that native-bee and honeybee visitation to apple flowers was positively correlated with co-flowering species richness (within the orchard and the wider matrix); however, visitation by native bees decreased as the area of co-flowering species in the surrounding landscape increased. Our study highlights the importance of maintaining diverse co-flowering plant communities within the local landscape to increase and support a wide variety of pollinators in horticultural production systems.

Funder

Horticulture Innovation Australia

Western Sydney University

Bayer Crop Science

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3