Abstract
Eggplant is a popular vegetable crop. Eggplant yields can be affected by various diseases. Automatic detection and recognition of diseases is an important step toward improving crop yields. In this paper, we used a two-stream deep fusion architecture, employing CNN-SVM and CNN-Softmax pipelines, along with an inference model to infer the disease classes. A dataset of 2284 images was sourced from primary (using a consumer RGB camera) and secondary sources (the internet). The dataset contained images of nine eggplant diseases. Experimental results show that the proposed method achieved better accuracy and lower false-positive results compared to other deep learning methods (such as VGG16, Inception V3, VGG 19, MobileNet, NasNetMobile, and ResNet50).
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献