Responses of Soybean Water Supply and Requirement to Future Climate Conditions in Heilongjiang Province

Author:

Li Na,Nie TangzheORCID,Tang Yi,Lu Dehao,Wang Tianyi,Zhang Zhongxue,Chen Peng,Li Tiecheng,Meng Linghui,Jiao Yang,Cheng Kaiwen

Abstract

Understanding future changes in water supply and requirement under climate change is of great significance for long-term water resource management and agricultural planning. In this study, daily minimum temperature (Tmin), maximum temperature (Tmax), solar radiation (Rad), and precipitation for 26 meteorological stations under RCP4.5 and RCP8.5 of MIRCO5 for the future period 2021–2080 were downscaled by the LARS-WG model, daily average relative humidity (RH) was estimated using the method recommended by FAO-56, and reference crop evapotranspiration (ET0), crop water requirement (ETc), irrigation water requirement (Ir), effective precipitation (Pe), and coupling degree of ETc and Pe (CD) for soybean during the growth period were calculated by the CROPWAT model in Heilongjiang Province, China. The spatial and temporal distribution of these variables and meteorological factors were analyzed, and the response of soybean water supply and requirement to climate change was explored. The result showed that the average Tmin, Tmax, and Rad under RCP4.5 and RCP8.5 increased by 0.2656 and 0.5368 °C, 0.3509 and 0.5897 °C, and 0.0830 and 0.0465 MJ/m², respectively, while the average RH decreased by 0.0920% and 0.0870% per decade from 2021 to 2080. The annual average ET0, ETc, Pe, and Ir under RCP4.5 for 2021–2080 were 542.89, 414.35, 354.10, and 102.44 mm, respectively, and they increased by 1.92%, 1.64%, 2.33%, and −2.12% under the RCP8.5, respectively. The ranges of CD under RCP4.5 and RCP8.5 were 0.66–0.95 and 0.66–0.96, respectively, with an average value of 0.84 for 2021–2080. Spatially, the CD showed a general trend of increasing first and then decreasing from west to east. In addition, ET0, ETc, and Pe increased by 9.55, 7.16, and 8.77 mm per decade, respectively, under RCP8.5, while Ir decreased by 0.65 mm per decade. Under RCP4.5 and RCP8.5, ETc, Pe, and Ir showed an overall increasing trend from 2021 to 2080. This study provides a basis for water resources management policy in Heilongjiang Province, China.

Funder

Basic Scientific Research Fund of Heilongjiang Provincial Universities

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference57 articles.

1. Impact of climate change on grain production in China;Chen;Chin. Agric. Sci. Bull.,2021

2. Global Warming of 1.5 °C; Impacts of 1.5 °C of Global Warming on Natural and Human Systems. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,2018

3. Spatiotemporal Analysis of Maize Water Requirement in the Heilongjiang Province of China during 1960–2015

4. Influence of rainfall weather on agricultural production and countermeasures;Tang;Agric. Dev. Equip.,2019

5. Assessing the impact of global climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3