Development of an Energy Efficient and Fully Autonomous Low-Cost IoT System for Irrigation Scheduling in Water-Scarce Areas Using Different Water Sources

Author:

Tsiropoulos ZisisORCID,Skoubris Evangelos,Fountas Spyros,Gravalos IoannisORCID,Gemtos Theofanis

Abstract

Politicians and the general public are concerned about climate change, water scarcity, and the constant reduction in agricultural land. Water reserves are scarce in many regions in the world, negatively affecting agricultural productivity, which makes it a necessity to introduce sustainable water resource management. Nowadays, there is a number of commercial IoT systems for irrigation scheduling, helping farmers to manage and save water. However, these systems focus on using the available fresh water sources, without being able to manage alternative water sources. In this study, an Arduino-based low-cost IoT system for automated irrigation scheduling is developed and implemented, which can provide measurements of water parameters with high precision using low-cost sensors. The system used weather station data combined with the FAO56 model for computing the water requirements for various crops, and it was capable of handling and monitoring different water streams by supervising their quality and quantity. The developed IoT system was tested in several field trials, to evaluate its capabilities and functionalities, including the sensors’ accuracy, its autonomous controlling and operation, and its power consumption. The results of this study show that the system worked efficiently on the management and monitoring of different types of water sources (rainwater, groundwater, seawater, and wastewater) and on automating the irrigation scheduling. In addition, it was proved that the system is can be used for long periods of time without any power source, making it ideal for using it on annual crops.

Funder

EASME - Executive Agency for Small and Medium-sized Enterprises

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Water and Energy Management in the Research and Recreation Area of Telkom University through Energy Use Intensity (EUI);2024 International Conference on Data Science and Its Applications (ICoDSA);2024-07-10

2. A Fuzzy Logic- and Internet of Things-Based Smart Irrigation System;The 10th International Electronic Conference on Sensors and Applications;2023-11-15

3. Sustainable and Efficient Water Management for Resilient Regional Development: The Case of Ukraine;Agriculture;2023-07-10

4. Digital farming based on a smart and user‐friendly IoT irrigation system: A conifer nursery case study;IET Cyber-Physical Systems: Theory & Applications;2023-04-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3