Research on Navigation Path Extraction and Obstacle Avoidance Strategy for Pusher Robot in Dairy Farm

Author:

Tian FuyangORCID,Wang Xinwei,Yu Sufang,Wang Ruixue,Song Zhanhua,Yan YinfaORCID,Li Fade,Wang Zhonghua,Yu Zhenwei

Abstract

Existing push robots mainly use magnetic induction technology. These devices are susceptible to external electromagnetic interference and have a low degree of intelligence. To make up for the insufficiency of the existing material pushing robots, and at the same time solve the problems of labor-intensive, labor-intensive, and inability to push material in time at night, etc., in this study, an autonomous navigation pusher robot based on 3D lidar is designed, and an obstacle avoidance strategy based on the improved artificial potential field method is proposed. Firstly, the 3D point cloud data of the barn is collected by the self-designed pushing robot, the point cloud data of the area of interest is extracted using a direct-pass filtering algorithm, and the 3D point cloud of the barn is segmented using a height threshold. Secondly, the Least-Squares Method (LSM) and Random Sample Consensus (RANSAC) were used to extract fence lines, and then the boundary contour features were extracted by projection onto the ground. Finally, a target influence factor is added to the repulsive potential field function to determine the principle of optimal selection of the parameters of the improved artificial potential field method and the repulsive direction, and to clarify the optimal obstacle avoidance strategy for the pusher robot. It can verify the obstacle avoidance effect of the improved algorithm. The experimental results showed that under three different environments: no noise, Gaussian noise, and artificial noise, the fence lines were extracted using RANSAC. Taking the change in the slope as an indicator, the obtained results were about −0.058, 0.058, and −0.061, respectively. The slope obtained by the RANSAC method has less variation compared to the no-noise group. Compared with LSM, the extraction results did not change significantly, indicating that RANSAC has a certain resistance to various noises, but RANSAC performs better in extraction effect and real-time performance. The simulation and actual test results show that the improved artificial potential field method can select reasonable parameters and repulsive force directions. The optimized path increases the shortest distance of the obstacle point cloud from the navigation path from 0.18 to 0.41 m, where the average time is 0.059 s, and the standard deviation is 0.007 s. This shows that the optimization method can optimize the path in real time to avoid obstacles, basically meet the requirements of security and real-time performance, and effectively avoid the local minimum problem. This research will provide corresponding technical references for pusher robots to overcome the problems existing in the process of autonomous navigation and pushing operation in complex open scenarios.

Funder

National Natural Science Foundation of China

Shandong Agricultural University Research Foundation

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3