Prediction Model and Influencing Factors of CO2 Micro/Nanobubble Release Based on ARIMA-BPNN

Author:

Wang Bingbing,Lu Xiangjie,Ren Yanzhao,Tao Sha,Gao Wanlin

Abstract

The quantitative prediction of CO2 concentration in the growth environment of crops is a key technology for CO2 enrichment applications. The characteristics of micro/nanobubbles in water make CO2 micro/nanobubble water potentially useful for enriching CO2 during growth of crops. However, few studies have been conducted on the release characteristics and factors influencing CO2 micro/nanobubbles. In this paper, the factors influencing CO2 release and changes in CO2 concentration in the environment are discussed. An autoregressive integrated moving average and backpropagation neural network (ARIMA-BPNN) model that maps the nonlinear relationship between the CO2 concentration and various influencing factors within a time series is proposed to predict the released CO2 concentration in the environment. Experimental results show that the mean absolute error and root-mean-square error of the combination prediction model in the test datasets were 9.31 and 17.48, respectively. The R2 value between the predicted and measured values was 0.86. Additionally, the mean influence value (MIV) algorithm was used to evaluate the influence weights of each input influencing factor on the CO2 micro/nanobubble release concentration, which were in the order of ambient temperature > spray pressure > spray amount > ambient humidity. This study provides a new research approach for the quantitative application of CO2 micro/nanobubble water in agriculture.

Funder

National Key R&D Program of the Ministry of Science and Technology- Research on Field Planting Online Monitoring Technology and System Standards

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3