Assessment of the Stabilization of Mercury Contaminated Soil Using Starfish

Author:

Moon Deok Hyun,Jung Sokhee P.ORCID,Koutsospyros Agamemnon

Abstract

Approximately 50% of the 2600 decommissioned mines in South Korea are implicated in toxic metal/metalloid releases. One of the problems experienced in orchards situated near abandoned mines is the transport of heavy metals including mercury (Hg) into the plants. Due to high levels of Hg observed in orchard soils, heavy metal remediation is needed. The stabilization process is one of the widely used techniques to immobilize heavy metals in contaminated soil and waste. In this study, two types of starfish, Asterias amurensis (ASF) and Asterina pectinifera (PSF), were considered as stabilizing materials for remediating Hg-contaminated soil. In addition to natural starfish, the Hg immobilization effectiveness of calcined forms (CASF and CPSF) was also evaluated comparatively. The effect of particle size reduction on Hg immobilization was assessed for the ASF treatment. Total dosages of less than 10 wt% of ASF and PSF and less than 5 wt% of CASF and CPSF were applied to the Hg contaminated soil. Following treatment and curing for 28 days, the effectiveness of the stabilization process was evaluated using 1N HCl extraction tests. Overall, the stabilization results showed a decrease in Hg leachability with increasing dosages of ASF, PSF, CASF and CPSF. Generally, ASF outperformed the PSF treatments and calcined forms (CASF, CPSF) were more effective than natural forms (ASF, PSF). A reduction of approximately 79% was attained in Hg leachability for the 10 wt% ASF treatments. The -#20 mesh materials were more effective on Hg immobilization than the -#10 mesh materials. The Hg immobilization effectiveness exhibited the following increasing order: PSF (-#10 mesh) < ASF (-#10 mesh) < CPSF (-#10 mesh) < ASF (-#20 mesh) < CASF (-#10 mesh). It was found that effective Hg immobilization was most probably associated with the existing sulfur content in the starfish. The results of scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) indicated that a HgS compound and pozzolanic reaction products were responsible for effective Hg immobilization.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3