Abstract
Chickpea (Cicer arietinum L.) is one of the most ımportant food legume crops in the world. Chickpea is valued for its nutritive seed composition, which is high in protein content and used increasingly as a substitute for animal protein. Days to fırst flowerıng is an important component of the adaptation and productivity of chickpea in rainfed environments characterized by terminal drought and heat stress. This study aimed to identify the inheritance pattern and identify quantitative trait loci (QTLs) for days to first flowering and flowering color in F2:4 generation nested association mapping (NAM) populations of chickpea obtained using wide crosses between Gokce as the cultivated variety and wild accessions of C. reticulatum and C. echinospermum. A total of ten populations of 113 to 191 individuals each were grown under field conditions near Sanliurfa, Turkey. Two populations were genotyped for 46 single nucleotide polymorphism (SNP) markers, enabling QTL analysis. Flowering time differed between families, with the frequency distributions indicating quantitative inheritance controlled by both genes of major and minor effects. Three significant QTLs for the flowering time were mapped in one mapping family. For flower color, chi-square tests showed that five populations accepted single-gene action, two populations accepted two-gene action, and three populations accepted neither model. Two significant QTLs at three genomic regions were identified across the two genotyped populations. Days to first flowering was positively correlated with flower color for two of the ten populations. The diversity of QTLs identified underscored the potential of crop wild relatives of chickpea as sources of novel alleles for chickpea breeding.
Funder
Council for At-Risk Academics
United States Agency for International Development
Subject
Plant Science,Agronomy and Crop Science,Food Science