Characteristics of the Soil Organic Carbon Pool in Paddy Fields in Guangdong Province, South China

Author:

Hu Lijiang12ORCID,Zeng Ruikun1,Yao Jianwu1,Liang Ziwei1,Zeng Zhaobing3,Li Wenying1,Wang Ronghui1,Shu Xianjiang3,Chen Yong1,Ning Jianfeng1ORCID

Affiliation:

1. Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

2. College of Resources and Environment, Yangtze University, Wuhan 430100, China

3. Center of Agricultural Environment and Cultivated Land Quality Protection of Guangdong Province (Center of Agricultural and Rural Investment Project of Guangdong Province), Guangzhou 510599, China

Abstract

To understand the role of paddy soils in the global carbon cycle, it is necessary to analyze the characteristics of the organic carbon pool at different soil depths. It was hypothesized that soil organic carbon fractions including labile organic carbon fraction I (LOCF-I), labile organic carbon fraction II (LOCF-II), and recalcitrant organic carbon (ROC) distributed differently within the soil profile. In this study, soil was collected from 27 typical rice fields in Guangdong Province, south China. The carbon fractions of the paddy field soils were analyzed and compared over a 0–60 cm depth profile. The relationship between carbon content and the physical and chemical properties of the soils was further analyzed using correlation analysis and structural equation modeling. The results showed that soil total organic carbon concentration in paddy fields was increased by 22.1% during the last four decades. In the soil organic carbon pool of 0–60 cm profile, the proportion of 67.31 to 70.31% in ROC, 21.75 to 22.06% in LOCF-I, and 7.7 to 10.63% was recorded, respectively, indicating that ROC was the dominating fraction. Storage of soil total organic carbon and fractions all decreased with the increase in soil depth. Correlation and path analysis showed that total nitrogen was the main driving factor affecting the soil carbon fractions, whereas pH and soil bulk density indirectly affected the content of carbon fractions by influencing total nitrogen. The results imply the importance of soil total nitrogen in paddy carbon management of rice cultivation.

Funder

Low Carbon Agriculture and Carbon Neutralization Research Center, GDAA

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province, China

Soil Profile Excavation and Cultivation Records Collection for the Monitored Cultivated Land of Guangdong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3