Research on a Trellis Grape Stem Recognition Method Based on YOLOv8n-GP

Author:

Jiang Tong123,Li Yane123,Feng Hailin123ORCID,Wu Jian123,Sun Weihai123,Ruan Yaoping123ORCID

Affiliation:

1. College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China

2. Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China

3. China Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China

Abstract

Grapes are an important cash crop that contributes to the rapid development of the agricultural economy. The harvesting of ripe fruits is one of the crucial steps in the grape production process. However, at present, the picking methods are mainly manual, resulting in wasted time and high costs. Therefore, it is particularly important to implement intelligent grape picking, in which the accurate detection of grape stems is a key step to achieve intelligent harvesting. In this study, a trellis grape stem detection model, YOLOv8n-GP, was proposed by combining the SENetV2 attention module and CARAFE upsampling operator with YOLOv8n-pose. Specifically, this study first embedded the SENetV2 attention module at the bottom of the backbone network to enhance the model’s ability to extract key feature information. Then, we utilized the CARAFE upsampling operator to replace the upsampling modules in the neck network, expanding the sensory field of the model without increasing its parameters. Finally, to validate the detection performance of YOLOv8n-GP, we examined the effectiveness of the various keypoint detection models constructed with YOLOv8n-pose, YOLOv5-pose, YOLOv7-pose, and YOLOv7-Tiny-pose. Experimental results show that the precision, recall, mAP, and mAP-kp of YOLOv8n-GP reached 91.6%, 91.3%, 97.1%, and 95.4%, which improved by 3.7%, 3.6%, 4.6%, and 4.0%, respectively, compared to YOLOv8n-pose. Furthermore, YOLOv8n-GP exhibits superior detection performance compared with the other keypoint detection models in terms of each evaluation indicator. The experimental results demonstrate that YOLOv8n-GP can detect trellis grape stems efficiently and accurately, providing technical support for advancing intelligent grape harvesting.

Funder

Natural Science Foundation of Zhejiang Province

Key R&D Projects of Zhejiang Province

Three Agricultural Nine-Party Science and Technology Collaboration Projects of Zhejiang Province

Research Development Foundation of Zhejiang A&F University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3