Parametric Analysis and Numerical Optimization of Root-Cutting Shovel of Cotton Stalk Harvester Using Discrete Element Method
-
Published:2024-08-25
Issue:9
Volume:14
Page:1451
-
ISSN:2077-0472
-
Container-title:Agriculture
-
language:en
-
Short-container-title:Agriculture
Author:
Liu Hua12ORCID, Cao Silin2, Han Dalong2, He Lei2, Li Yuanze3, Cai Jialin3, Meng Hewei1, Wang Shilong1
Affiliation:
1. College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China 2. Institute of Machinery and Equipment, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China 3. College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi 830052, China
Abstract
Aiming at solving the problems of the high cost of manual pulling, the low reliability of existing pulling devices, and the high breaking rates and high leakage rates in the process of cotton stalk reuse after removal from the field in the Xinjiang cotton area, a soil-loosening and root-cutting cotton stalk pulling and gathering machine was researched and designed; a root-cutting force model was established; the key parameters of the V-shaped root-cutting knife were calculated and optimized; and the ranges of the slide cutting angle, the cutting-edge angle, and the soil entry angle were determined. A shoveling process simulation of the V-shaped root-cutting knife and the root–soil complex was constructed, and the working mechanism of the V-shaped root-cutting knife was clarified. In order to verify the reliability and operation performance of the V-shaped root-cutting knife, the slide cutting angle, the cutting-edge angle, and the soil entry angle were used as the test factors, and a response surface test with three factors and three levels was carried out with the root-breaking force and the mean value of the cutting resistance as the test indices. The test results were analyzed by variance analysis, and the significant factors influencing the root-breaking force in descending order were the slide cutting angle, cutting-edge angle, and soil entry angle. The degrees of influence on the mean value of the cutting resistance were ordered as follows: slide cutting angle, soil entry angle, and cutting-edge angle. In order to make the V-shaped root-cutting knife achieve the optimal working state, the parameters of the test indices were optimized, and the optimal design parameters of the V-shaped root-cutting knife were set as follows: the slide cutting angle was 48.3°, the cutting-edge angle was 43.4°, and the soil entry angle was 26.2°. The field uprooting test showed that the average pass rate of root breakage was 94.8% and the average pull-out rate of cotton stalks was 93.2%. This study provides theoretical guidance for the development of a root-breaking mechanism for cotton straw harvesters.
Funder
National Key Research and Development Program of China Autonomous Region Key research and development task special project of Xinjiang, China
Reference30 articles.
1. Cheng, Y. (2022). Study on Fluctuation and Influencing Factors of Cotton Production in Xinjiang. [Ph.D. Thesis, Shihezi University]. (In Chinese). 2. Sun, Z.Y. (2023). Research on the Adoption and Effectiveness Evaluation of Agricultural Socialized Services in Xinjiang Cotton Region. [Ph.D. Thesis, Shihezi University]. (In Chinese). 3. Prakash, S., Sharma, K., Dhumal, S., Senapathy, M., Deshmukh, V.P., Kumar, S., Anitha, T., and Balamurugan, V. (2024). Unlocking the potential of cottonstalk as a renewable source ofcellulose: A review on advancementsand emerging applications. Int. J. Biol. Macromol, 261. 4. Ding, X.H., Yan, L.H., Guo, C., Jia, D.Z., Guo, N.N., and Wang, L.X. (2023). Synergistic Effects between Lignin, Cellulose and Coal in the Co-Pyrolysis Process of coal and Cotton Stalk. Molecules, 28. 5. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks;Narendra;Bioresour. Technol.,2009
|
|