Research on Distributed Dual-Wheel Electric-Drive Fuzzy PI Control for Agricultural Tractors

Author:

Zhang Qian1,Hu Caiqi1,Li Rui1

Affiliation:

1. College of Mechanical and Electrical Engineering, Qingdao Agricultural University, Qingdao 266109, China

Abstract

In order to solve the problem that, when the vehicle speed of an agricultural distributed dual-wheel electric-drive tractor changes or the system is disturbed by off-load, the traditional PI control cannot be adjusted in time, resulting in the overshoot of steering control or control delay, meaning it then cannot travel along the target trajectory quickly and accurately, a parameter-adaptive dual-dimensional fuzzy PI speed and steering adjustment controller was proposed, which can adjust the PI parameters in real time based on the deviation between vehicle speed, steering, and reference value, as well as the rate of deviation change. Firstly, based on the operational characteristics of agricultural tractors, a dynamic model of a distributed dual-wheel tractor was established, and a hardware-in-the-loop (HIL) test bench was set up. Fuzzy PI controller algorithms for vehicle speed and steering were designed and developed. In addition, simulations and tests were carried out under no-load and off-load tractor operating conditions with MATLAB/Simulink, respectively. The results indicate that, compared with a traditional PI controller, the fuzzy PI controller exhibits a faster control response and better robustness, reducing overshoot by approximately 60% and the steady-state response time by approximately 25%. When subjected to off-load disturbances, the maximum trajectory offset is controlled within 0.08 m, and the maximum trajectory offset is reduced by 45% compared with a traditional PI controller; therefore, the fuzzy PI control algorithm proposed in this paper makes the tractor’s running trajectory more stable and has stronger anti-interference ability towards off-load disturbances.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3