Foliar H2O2 Application Improve the Photochemical and Osmotic Adjustment of Tomato Plants Subjected to Drought

Author:

Barzotto Gustavo Ribeiro1,Cardoso Caroline Pardine2ORCID,Jorge Letícia Galhardo2,Campos Felipe Girotto2ORCID,Boaro Carmen Sílvia Fernandes2ORCID

Affiliation:

1. School of Agriculture, São Paulo State University (UNESP), Campus Botucatu, Ave. Universitária, n° 3780-Altos do Paraíso, Botucatu 18610-034, SP, Brazil

2. Institute of Biosciences, São Paulo State University (UNESP), Campus Botucatu, Street Prof. Dr. Antonio Celso Wagner Zanin, 250-District de Rubião Junior, Botucatu 18618-689, SP, Brazil

Abstract

Water limits may have a disastrous impact on agricultural productivity, and the current climate change scenario presents additional problems for crops that rely on regular rainfall. Reactive oxygen species, such as hydrogen peroxide (H2O2), are a recognized stress-sensing mechanism in plants, and may be investigated as an approach for reducing stress impact via systemic acquired acclimation. Here, we looked at how H2O2 foliar application impacts tomato plants’ photosynthetic activity, antioxidant system, sugar chemical profile, and osmotic adjustment during drought and recovery. The experiment was in randomized blocks, 3 × 2 factorial design, with no, one, or two foliar application of 1 mM H2O2, on plants that were either continually watered or subjected to drought. The plants were tested both during the drought period and after they had resumed irrigation (recovered). Leaf water potential, chlorophyll a fluorescence, gas exchange, lipid peroxidation, H2O2 concentrations, phenols, proline, antioxidant enzyme activity, and sugar chemical profile were all measured. Our findings showed that H2O2 application generated metabolic alterations in tomato plants independent of water status, and that two applications in drought plants resulted in a 30% decrease in oxidative stress during drought and faster recovery following irrigation return, with greater production of defence-related molecules such as the APX enzyme, phenols, arabinose, and mannose. Continually watered plants also benefited from H2O2 application, which increased carbon assimilation by 35%.

Funder

National Council for Scientific and Technological Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3