Growth Responses and Accumulation Characteristics of Three Ornamental Plants to Sn Contamination in Soil

Author:

Liu YuxiaORCID,Xu Weili,Wang Yi,Hao Weiduo,Zhou Qixing,Liu Jianv

Abstract

Decorative ornamental plants have been applied as hyperaccumulators/phytoremediators to a wide spectrum of heavy metal contaminants. In this study, pot culture experiments were conducted to investigate the Sn tolerance and accumulation in Impatiens balsamina L., Mirabilis jalapa L. and Tagetes erecta L., in order to assess the possibility of these three ornamental plants to be used as phytoremediators of Sn-contaminated soil. Results show that all three plants exhibited strong tolerance to Sn contamination, and no significant visual toxicity was observed for all three plants grown under most of the Sn treatments. The amount of Sn accumulated in the three plants was positively correlated with the Sn concentration in the soil. The order of the Sn accumulative capacity was Impatiens balsamina > Mirabilis jalapa > Tagetes erecta. Impatiens balsamina and Tagetes erecta showed a low translocation ability (TF) (<1), and the roots accumulated the highest Sn concentration, but Impatiens balsamina showed a relatively high bioconcentration factor (BCF, Sn concentration in each part > 100 mg/kg after Sn treatment of 500 mg/kg). Meanwhile, the TF of Mirabilis jalapa was >1, and the fluorescence accumulated the most Sn. In combination with the adaptation to high concentrations of various heavy metals, these three ornamental plants are potential candidates for Sn mining tailings or contaminated soil.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference34 articles.

1. Tin and Inorganic Tin Compounds;Howe,2005

2. Toxic effects of tin compounds on microorganisms

3. Evaluation of soil fertility and heavy metal contamination in abandoned regions of tin mine, China;Shao,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3