Abstract
In recent decades, global climate change and heavy metal stress have severely affected plant growth and biomass, which has led to a serious threat to food safety and human health. Anthropogenic activities, the rapid pace of urbanization, and the use of modern agricultural technologies have further aggravated environmental conditions, resulting in limited crop growth and productivity. This review highlights the various adaptive transcriptomic responses of plants to tolerate detrimental environmental conditions, such as drought, salinity, and heavy metal contamination. These stresses hinder plant growth and development by disrupting their physiological and biochemical processes by inducing oxidative stress, nutritional imbalance, and osmotic disturbance, and by deteriorating their photosynthetic machinery. Plants have developed different strategies to safeguard themselves against the toxic effects of these environmental stresses. They stimulate their secondary messenger to activate cell signaling, and they trigger other numerous transcriptomic responses associated with plant defense mechanisms. Therefore, the recent advances in biological sciences, such as transcriptomics, metabolomics, and proteomics, have assisted our understanding of the stress-tolerant strategies adopted by plants, which could be further utilized to breed tolerant species. This review summarizes the stress-tolerant strategies of crops by covering the role of transcriptional factors in plants.
Funder
National Natural Science Foundation of China
Zhejiang Provincial Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献