A Lightweight Attention-Based Convolutional Neural Networks for Tomato Leaf Disease Classification

Author:

Bhujel Anil,Kim Na-Eun,Arulmozhi Elanchezhian,Basak Jayanta Kumar,Kim Hyeon-TaeORCID

Abstract

Plant diseases pose a significant challenge for food production and safety. Therefore, it is indispensable to correctly identify plant diseases for timely intervention to protect crops from massive losses. The application of computer vision technology in phytopathology has increased exponentially due to automatic and accurate disease detection capability. However, a deep convolutional neural network (CNN) requires high computational resources, limiting its portability. In this study, a lightweight convolutional neural network was designed by incorporating different attention modules to improve the performance of the models. The models were trained, validated, and tested using tomato leaf disease datasets split into an 8:1:1 ratio. The efficacy of the various attention modules in plant disease classification was compared in terms of the performance and computational complexity of the models. The performance of the models was evaluated using the standard classification accuracy metrics (precision, recall, and F1 score). The results showed that CNN with attention mechanism improved the interclass precision and recall, thus increasing the overall accuracy (>1.1%). Moreover, the lightweight model significantly reduced network parameters (~16 times) and complexity (~23 times) compared to the standard ResNet50 model. However, amongst the proposed lightweight models, the model with attention mechanism nominally increased the network complexity and parameters compared to the model without attention modules, thereby producing better detection accuracy. Although all the attention modules enhanced the performance of CNN, the convolutional block attention module (CBAM) was the best (average accuracy 99.69%), followed by the self-attention (SA) mechanism (average accuracy 99.34%).

Funder

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference37 articles.

1. Food and Agriculture Organization of the United Nations [FAO] (2019). Fao Publications Catalogue 2019, FAO.

2. Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network;Front. Plant Sci.,2020

3. Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning;Comput. Intell. Neurosci.,2017

4. FAO (2008). Climate-Related Transboundary Pests and Diseases, FAO.

5. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position;Biol. Cybern.,1980

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3