Soil Compaction from Wheel Traffic under Three Tillage Systems

Author:

Acquah Kobby,Chen YingORCID

Abstract

Agricultural fields are usually subjected to high amounts of traffic from field operations. The influence of traffic on sandy loam soil in three tillage systems were investigated in a field experiment. The field was located in a Canadian prairie region. In the experiment, the treatments were three tillage systems: no-tillage, disc tillage, and spring-tine tillage. Following tillage operations, field plots were trafficked with one pass of a sub-compact tractor. Soil properties were measured before and after the traffic to examine the effects of tillage systems and wheel traffic. For the effects of the tillage systems on the soil bulk density, soil shear strength, soil surface resistance, and soil cone index, the no-tillage system had higher values for all the soil properties when compared with the disc and spring-tine tillage systems. The plant (canola) population density ranged from 18.2 plants/m2 to 34.9 plants/m2, with the no-tillage having the lowest plant densities. For the effects of wheel traffic, one pass of the tractor in the disc and spring-tine tillage plots resulted in a 2.7% and 17.4% reduction in soil moisture content, respectively. After wheel traffic, the average soil shear strength for the disc and spring-tine systems were still significantly lower than the no-tilled system. Sinkages of 40 and 50 mm were observed for the spring-tine and disc tillage systems, respectively. The results of this study highlight the importance of preventing the demerits of soil compaction induced by wheel traffic after tillage operations.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference25 articles.

1. Optimum Tillage System for Pepper Production in an Alfisol of South-Western Nigeria;Samuel;Afr. J. Agric. Res.,2010

2. Influence of Soil Tillage on Soil Compaction

3. Effect of Tillage Systems on Soil Moisture, Soil Temperature, Soil Respiration and Production of Wheat, Maize and Soybean Crops;Moraru;J. Food Agric. Environ.,2012

4. Soil compaction produced by tractor with radial and cross-ply tyres in two tillage regimes

5. Seedbed Preparation Methods and Their Effect on Soil Physical Conditions and Crop Establishment;Choudhary,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3