Experimental Investigation on the Impact of Drying–Wetting Cycles on the Shrink–Swell Behavior of Clay Loam in Farmland

Author:

Qi WeiORCID,Wang Ce,Zhang Zhanyu,Huang Mingyi,Xu Jiahui

Abstract

Soil shrink–swell behavior is a common phenomenon in farmland, which usually alters the process of water and solute migration in soil. In this paper, we report on a phenomenological investigation aimed at exploring the impact of drying–wetting cycles on the shrink–swell behavior of soil in farmland. Samples were prepared using clay loam collected from farmland and subjected to four drying–wetting cycles. The vertical deformation of soil was measured by a vernier caliper, and the horizontal deformation was captured by a digital camera and then calculated via an image processing technique. The results showed that the height, equivalent diameter, volume and shrinkage-swelling potential of the soil decreased with the repeated cycles. Irreversible deformation (shrinkage accumulation) was observed during cycles, suggesting that soil cracks might form owing to previous drying rather than current drying. The vertical shrinkage process consisted of two stages: a declining stage and a residual stage, while the horizontal shrinkage process had one more stage, a constant stage at the initial time of drying. The VG-Peng model fit the soil shrinkage curves very well, and all shrinkage curves had four complete shrinkage zones. Drying–wetting cycles had a substantial impact on the soil shrinkage curves, causing significant changes in the distribution of void ratio and moisture ratio in the four zones. However, the impact weakened as the number of cycles increased because the soil structure became more stable. Vertical shrinkage dominated soil deformation at the early stage of drying owing to the effect of gravity, while nearly isotropic shrinkage occurred after entering residual shrinkage. Our study revealed the irreversible deformation and deformation anisotropy of clay loam collected from farmland during drying–wetting cycles and analyzed the shrink–swell behavior during cycles from both macroscopic and microscopic points of view. The results are expected to improve the understanding of the shrink–swell behavior of clay loam and the development of soil desiccation cracks, which will be benefit research on water and solute migration in farmland.

Funder

National Natural Science Foundation of China

the Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3