Modelling of Mechanical Properties of Fresh and Stored Fruit of Large Cranberry Using Multiple Linear Regression and Machine Learning

Author:

Gorzelany Józef,Belcar Justyna,Kuźniar PiotrORCID,Niedbała GniewkoORCID,Pentoś KatarzynaORCID

Abstract

The study investigated the selected mechanical properties of fresh and stored large cranberries. The analyses focused on changes in the energy requirement up to the breaking point and aimed to identify the apparent elasticity index of the fruit of the investigated large cranberry fruit varieties relating to harvest time, water content, as well as storage duration and conditions. After 25 days in storage, the fruit of the investigated varieties were found with a decrease in mean acidity, from 1.56 g⋅100 g−1 to 1.42 g⋅100 g−1, and mean water content, from 89.71% to 87.95%. The findings showed a decrease in breaking energy; there was also a change in the apparent modulus of elasticity, its mean value in the fresh fruit was 0.431 ± 0.07 MPa, and after 25 days of storage it decreased to 0.271 ± 0.08 MPa. The relationships between the cranberry varieties, storage temperature, duration of storage, x, y, and z dimensions of the fruits, and their selected mechanical parameters were modeled with the use of multiple linear regression, artificial neural networks, and support vector machines. Machine learning techniques outperformed multiple linear regression.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference48 articles.

1. Wpływ nawożenia azotem na wzrost i plonowanie żurawiny wielkoowocowej (Vaccinium macrocarpon AIT);Krzewińska;Zesz. Nauk. Inst. Sadow. Kwiaciarstwa,2008

2. FAOSTAT https://www.fao.org/faostat/en/#data/QV

3. Hierarchical Position of the Genus Oxycoccus,2009

4. Influence of cranberry juice on attachment ofEscherichia coli to glass

5. Inhibition of the Adherence of P-FimbriatedEscherichia colito Uroepithelial-Cell Surfaces by Proanthocyanidin Extracts from Cranberries

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3