Different Responses to Adventitious Rhizogenesis under Indole-3-Butyric Acid and Seaweed Extracts in Ornamental’s Cuttings: First Results in Photinia x fraseri ‘Red Robin’

Author:

Loconsole Danilo1ORCID,Sdao Anna Elisa1,Cristiano Giuseppe1ORCID,De Lucia Barbara1ORCID

Affiliation:

1. Department of Soil, Plant and Food Sciences (Di.S.S.P.A.), University of Bari, “Aldo Moro”, Via Amendola 165/A, 70126 Bari, Italy

Abstract

Fraser’s photinia ‘Red Robin’ (Photinia x fraseri Dress, Rosaceae family) is an important primary ornamental landscaping species with optimal hedge or screen effects and low maintenance, but it is difficult to root when propagated by cuttings, although high concentrations of phytohormones are used to optimize rhizogenesis. To our knowledge, there is currently no feasible enhanced method for photinia vegetative propagation through stem cuttings, using seaweed extract-based biostimulants as root promoters. Given the economic importance of the species, this research aims to assess the effects of indole-3-butyric acid (IBA) and seaweed extract-based stimulators on the quality of photinia ‘Red Robin’ cuttings, in terms of rooting indicators and ground and aboveground agronomic features. The treatments applied were different concentrations of commercial rooting stimulators compared to an untreated control: C0: distilled water; Rhizopon AA: 1% IBA (R1); Kelpak®: 2 mL L−1 (K2); Kelpak®: 3 mL L−1 (K3); Goteo®: 2 mL L−1 (G2); Goteo®: 3 mL L−1 (G3). The first results showed different responses to adventitious rhizogenesis under IBA and both seaweed extract treatments. At 70 DAC (days after cutting), the seaweed extract stimulated the production of over 80% of cuttings with callus; at 240 DAC, the percentage of rooted cuttings treated under R1 was the highest = 34.3%; the worst results were obtained by both biostimulant treatments at the highest doses: K3 = 21.3% and G3 = 20.7%. Furthermore, R1 produced 3.07 roots per cutting, which was 50% higher than the average of all other treatments. The applications of Kelpak® and Goteo® biostimulants, at both concentrations, resulted in an inhibition of root length with values below the untreated control. Rooted cuttings under R1 showed the highest ground (0.35 g) and aboveground (0.47) dry value. Neither seaweed extract, Kelpak® or Goteo®, at different concentrations, improved both the ground and above-ground weights of rooted cutting, compared to the untreated control, indicating that these natural products are not suitable for Fraser’s photinia ‘Red Robin’ propagation using this methodology. The overall quality of cuttings in IBA treatment was the strongest, with 1%, being the optimum concentration. Further research must be conducted to propose effective agronomic protocols by investigating application methods, doses and number of applications, and to clarify the biochemical and molecular mechanisms of action of these seaweed extracts.

Funder

Regione Puglia (Italy) MIS

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference98 articles.

1. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond;Sci. Total Environ.,2020

2. The application of pesticides and mineral fertilizers in agriculture;Davydov;MATEC Web of Conferences,2018

3. Potential of micro algae as biopesticides to contribute to sustainable agriculture and environmental development;Costa;J. Environ. Sci. Health B,2019

4. Soil fertility, macro and micro nutrient uptake and their use efficiencies under integrated nutrient management in groundnut (Arachis hypogaea L.);Singh;Int. J. Chem. Stud.,2020

5. Neely, C., Bourne, M., Chesterman, S., Kouplevatskaya-Buttoud, I., Bojic, D., and Vallée, D. (2017). Implementing Agenda 2030 in Food and Agriculture: Accelerating Policy Impact through Cross-Sectoral Coordination at the Country Level, Food and Agricultural Organization of The United Nations.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3