Experimental Analysis and Evaluation of Automatic Control System for Evenly Scattering Crushed Straw

Author:

Wang Bokai1,Wu Feng1,Gu Fengwei1,Yang Hongchen1,Wu Huichang1,Hu Zhichao2

Affiliation:

1. Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China

2. Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100083, China

Abstract

In order to improve the solution to the unachieved uniformity of straw throwing, the unachieved qualified rate of coverage and the uneven straw throwing in sowing wheat without a tillage process after the rice harvest, and to change this unsatisfied quality of the straw mulch, a set of automatic control systems for straw throwing and covering was designed innovatively. An STM32 microcontroller was used as the main control unit, and the torque-acquisition system was used to collect the torque of the cutter roller shaft in real time and convert it into the conveying signal of the crushed straw. The control system changes the conveying quantity of broken straw in real time, through the dynamic response. This process realizes the optimal dynamic matching between the conveying amount of crushed straw and the impeller speed. We set up two kinds of tests: a straw-crushing-and-throwing system test bench (T6)6 with an automatic control system and a control test bench (C) without an automatic control system. T1 to T5 are, in turn, 0.85 m/s, 1.0 m/s, 1.15 m/s, 1.30 m/s and 1.45 m/s. For the C test, six test levels of 0.85 m/s (C1), 1.0 m/s (C2), 1.15 m/s (C3), 1.30 m/s (C4), 1.45 m/s (C5) and variable speed test (C6) were also set as control tests. The running time of the test-bed at each test level was 10 s; taking the throwing uniformity of the crushed straw and the rate of coverage as indexes, the rapid effect of the throwing-impeller speed on the test indexes at six levels was studied, and compared with the control test. Based on the great practical needs of this problem, this experiment innovatively realized the automatic regulation of the rotating speed of the scattering impeller at different forward speeds. Although some experimental innovations have been made in this study, the smashing knife (group) of the knife roller shaft will hit the ground during the rotation, which brings uncertainty and certain experimental errors to the real-time monitoring of the torque signals. In the next step, more sensors and intelligent algorithms will be added to the system, to reduce the knife throwing.

Funder

The Natural Science Foundation of Jiangsu Province

National Peanut Industry Technology System

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference25 articles.

1. Research Progress of Conservation Tillage Technology and Machine;He;Trans. Chin. Soc. Agric. Mach.,2018

2. Design and experiment of variable-rate fertilizer spreader with centrifugal distribution cover for rice paddy surface fertilization;Shi;Trans. Chin. Soc. Agric. Mach.,2018

3. Development and experiment of peanut no-till planter under full wheat straw mulching based on “clean area planting”;Gu;Trans. Chin. Soc. Agric. Eng.,2016

4. Numerical simulation and field tests of minimum-tillage planter with straw smashing and strip laying based on EDEM software;Shi;Comput. Electron. Agric,2019

5. Airflow Field Analysis in the Discharge Tube of An Impeller Blower;Liao;Trans. Chin. Soc. Agric. Mach.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3