Efficiency of Magnetically Treated Water on Decontamination of Chlorpyrifos® Residual: A Practically Water Insoluble Organophosphate in Brassica chinensis Linn.

Author:

Sudsiri Chadapust J.1,Jumpa Natawat2,Ritchie Raymond J.3

Affiliation:

1. Department of Industrial Management, Faculty of Sciences and Industrial Technology, Prince of Songkla University, Suratthani 90110, Thailand

2. Scientific Laboratory and Equipment Center, Prince of Songkla University, Suratthani 90110, Thailand

3. Biotechnology of Electromechanics Research Unit, Faculty of Technology and Environment, Prince of Songkla University, Phuket 83120, Thailand

Abstract

Chlorpyrifos® (Thaion Agro Chemical CO., Ltd. Yannawa, Bangkok 10120, Thailand) (an almost water insoluble organophosphate insecticide) has been extensively used, resulting in the presence as a surface contaminant in foodstuffs, surface streams and soils. It is thus critically essential to develop methods to degrade or remove and eliminate this pollutant from environments. Chlorpyrifos® has very limited solubility and so it is primarily a contaminant of the surfaces of foodstuffs. We present the effect of magnetically treated water (MTW) to remove Chlorpyrifos® contaminating in Brassica chinensis Linn., a commonly eaten vegetable in Thailand and globally. Samples were washed with magnetically treated water (MTW) prior to detection of Chlorpyrifos® with GC-MS (Gas Chromatograph-Mass Spectroscopy). Chlorpyrifos® was removed by a factor of 413 times (−99.7%) by MTW compared to the un-washed sample, whereas the removal factor for tap water washing was only 9.6 (−89%). The MTW washed material easily passed safety criteria (Maximum Residue Load—MRL), but the tap water washed vegetables did not do so reliably. Although Chlorpyrifos® may be banned in many countries, the binding properties of replacement organophosphates are likely to be similar, and so our results should generalize to pesticides in the organophosphate chemical class that are not readily water soluble.

Funder

National Science, Research and Innovation Fund (NSRF) and Prince of Songkla University

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference43 articles.

1. Pesticide residues contamination of vegetables and their public health implications in Ghana;Botwe;J. Environ. Issues Agric. Dev. Ctries.,2011

2. Health effects, trends and knowledge on pesticide use in Tanzania;Rajabu;Int. J. Sci. Res. Innov. Technol.,2017

3. A recent global review of hazardous chlorpyrifos pesticide in fruit and vegetables: Prevalence, remediation and actions needed;Foong;J. Hazard. Mater.,2020

4. Microbial Contamination of Raw Fruits and Vegetables;Mathur;Internet J. Food Saf.,2014

5. Chen, S., Liu, C., Peng, C., Liu, H., Hu, M., and Zhong, G. (2012). Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS ONE, 7.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3