Progress of Euhalophyte Adaptation to Arid Areas to Remediate Salinized Soil

Author:

Wang Yanyan12,Wang Shiqi12,Zhao Zhenyong1,Zhang Ke1,Tian Changyan1,Mai Wenxuan1

Affiliation:

1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

With the increasing shortage of water resources, the current management of saline–alkali lands in semi-arid and arid areas has gradually transformed from “flooding irrigation with drainage” in the past to the combination of controlling regional water and salt balance, phytoremediation, and comprehensive utilization of halophyte resources. However, soil salinization caused by natural and anthropogenic factors has still been a major global environmental problem, which changes the chemical and physical properties of soil, deteriorates the quality of underground water, and decreases biodiversity, contributing to the loss of soil productivity and the succession of the halotolerant species. Euhalophytes, as the materials for phytoremediation, have been confirmed to be effective species in improving saline–alkali soils. They can redistribute salts in soil profile through the interaction of their desalinization potential and irrigation water leaching, thereby preventing secondary salinization and improving soil productivity for long-term reclamation of saline soil. In this review, the adaptation mechanisms of euhalophytes to saline soils are generalized from the views of morphological, physiological, and molecular aspects and evaluated for their potential to remediate saline soil through salt removal and promoting leaching. Euhalophytes can not only sequestrate salts inside the central vacuole of cells to tolerate higher salt stress by means of organ succulence, ion compartmentalization, and osmotic adjustment but facilitate water infiltration and salts leaching through root–soil interaction. The root system’s mechanical penetration increases soil porosity, decreases soil density, as well as stabilizes soil aggregates. Moreover, the suitability of phytoremediation in arid situations with low precipitation and non-irrigation and some agricultural practices need to be taken into account to avoid salts returning to the soil as forms of litter and deep tillage altering salt distribution. Hence, euhalophytes planting in semi-arid and arid areas should be evaluated from their adaptation, desalinization, and prospective commercial values, such as foods, biofuels, and medical development to alleviate soil secondary salinization crisis and enhance the productivity of arable agricultural land.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference119 articles.

1. Global predictions of primary soil salinization under changing climate in the 21st century;Hassani;Nat. Commun.,2021

2. Shahid, S.A., Zaman, M., and Heng, L. (2018). Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, Springer.

3. Predicting long-term dynamics of soil salinity and sodicity on a global scale;Hassani;Proc. Natl. Acad. Sci. USA,2020

4. Reality and problems of controlling soil water and salt in farmland;Wang;Adv. Water Sci.,2020

5. Optimizing irrigation and drainage by considering agricultural hydrological process in arid farmland with shallow groundwater;Li;J. Hydrol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3