Representative Elementary Volume as a Function of Land Uses and Soil Processes Based on 3D Pore System Analysis

Author:

Gaspareto José V.1,Oliveira Jocenei A. T. de2,Andrade Everton1,Pires Luiz F.3ORCID

Affiliation:

1. Physics Graduate Program, State University of Ponta Grossa, Ponta Grossa 84030-900, Brazil

2. Sea Studies Center, Federal University of Paraná, Pontal do Paraná 83255-976, Brazil

3. Laboratory of Physics Applied to Soils and Environmental Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, Brazil

Abstract

Representative elementary volume (REV) is required for representative measurements of soil physical properties. However, questions may arise whether REV depends on how the soil structure is modified or whether processes in the soil affect REV. Here, we explore REV dependence for contrasting land uses (conventional tillage, no-tillage, and minimum tillage) and applying wetting and drying (W-D) cycles. The effect of different subvolume selection schemes (cube and core) on REV was also investigated. For this study, high-resolution three-dimensional images obtained using the X-ray Computed Tomography (XCT) technique were analyzed. The micromorphological properties measured were porosity (P), fractal dimension (FD), degree of anisotropy (DA), and pore connectivity (C). The results show that REV depends mainly on the land uses for P and C (both selection schemes). The core method showed lower REV due to the larger volume analyzed than that in the cube method. It was not possible to define a REV for DA. The REV obtained using the cube method was more sensitive to changes in the scale of analysis, showing an increasing trend with applied W-D cycles for P and FD. Our results indicate that REV cannot be considered static since land uses and processes influence it.

Funder

Brazilian National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3