Allelopathic Effects of Caffeic Acid and Its Derivatives on Seed Germination and Growth Competitiveness of Native Plants (Lantana indica) and Invasive Plants (Solidago canadensis)

Author:

Pan Linxuan1,He Feng1ORCID,Liang Qiuju1,Bo Yanwen1,Lin Xin1,Javed Qaiser1ORCID,Ullah Muhammad Saif2,Sun Jianfan13

Affiliation:

1. Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China

2. School of Climate Change and Adaptation, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada

3. Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China

Abstract

Allelopathy has garnered considerable attention, but the effects of different allelochemicals on invasive plants remain unclear. This study addressed the knowledge gap surrounding allelopathy and its impact on native and invasive plant species. We focused on the impact of caffeic acid and its derivatives on the growth and competitiveness of the native Lantana indica and the invasive plant Solidago canadensis. We selected three allelochemicals, caffeic acid, methyl caffeic acid, and ethyl caffeic acid, for evaluation at two concentrations (0.1 mM and 1.0 mM). Three planting methods were employed: (1) a single species of S. canadensis, (2) a single species of L. indica, and (3) a combination of S. canadensis and L. indica. In addition, a control group was also included. Results revealed that high concentrations (1 mM) of methyl caffeate (MC) and ethyl caffeate (EC) significantly reduced seed germination rate, seed germination index, and seed germination speed index of L. indica compared to a low concentration (0.1 mM). Plant height, stem diameter, biomass, and root length in the control group (CK) of S. canadensis were significantly higher than those in the treated groups. However, with increasing allelochemical concentration, L. indica’s relative competitiveness gradually decreased. These findings provide insights into the concentration-dependent effects of allelopathic compounds on the growth of L. indica and S. canadensis. By analyzing how these allelochemicals influence the growth and competitiveness of native and invasive plants, the study sheds light on the dynamics of allelochemical interactions between these species. This knowledge can be pivotal for understanding plant competition dynamics in ecosystems and could inform strategies to control invasive species or promote native plant growth.

Funder

National Natural Science Foundation of China

Carbon Peak and Carbon Neutrality Technology Innovation Foundation of Jiangsu Province

Priority Academic Program Development of Jiangsu Higher Education Institutions

Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3