Numerical Simulation of Spiral Cutter–Soil Interaction in Deep Vertical Rotary Tillage

Author:

Yang Wang1,Xiao Xiong1,Pan Ronghui1,Guo Shengyuan1,Yang Jian1

Affiliation:

1. College of Mechanical Engineering, Guangxi University, Nanning 530004, China

Abstract

Deep vertical rotary tillage (DVRT) is a new tillage method which combines the advantages of deep tillage and rotary tillage. However, limited research has been conducted on a critical component of the deep vertical rotary tiller, namely the spiral cutter. In clay loam, there are a lot of large clods in the topsoil layer after tillage, and the cutting resistance and vibration of the cutter are substantial. To reveal the reasons behind this, a simulation model of a spiral cutter–soil system was developed using Smoothed Particle Hydrodynamics (SPH). Using this model, the working process and force of a spiral cutter were thoroughly investigated. The results show that soil fragmentation, swelling, and loosening primarily result from the combined effects of the separation cutting, velocity difference cutting, auxiliary cutting, and the spiral blade’s lifting effect on soil. The reasons for the larger clods are that topsoil furrow slices are larger and the velocity difference cutting is insufficient. The substantial resistance of the cutter is mainly due to the greater resistance of the blade and the bottom edge, and too many blades cutting the soil simultaneously. Furthermore, due to the asymmetry of the cutter’s structure, the resistance’s amplitude reaches 1963.5 N, which causes the cutter’s large vibration. These findings would be an important basis for optimal cutter design.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3