Changes in Enzyme Activities in Salt-Affected Soils during Incubation Study of Diverse Particle Sizes of Rice Straw

Author:

Sharma Sandeep1ORCID,Gupta Nihar1ORCID,Chakkal Anmoldeep Singh1,Sharma Neha12,Alamri Saud3ORCID,Siddiqui Manzer H.3,Haider Fasih Ullah4ORCID

Affiliation:

1. Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India

2. Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India

3. Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

4. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China

Abstract

Soil enzymes are linked to the plant–soil–enzyme–soil nutrients of the soil system, which play an important role in carbon cycling and phosphorus mineralization in soil. Monitoring soil biological quality, particularly enzyme activities, after receiving organic amendments is a prerequisite for the sustainable management of soils. An incubation study was conducted to evaluate the effect of different particle sizes of rice residue (control, powdered, 1 cm, 2 cm, 5 cm, and 10 cm) on the enzymatic activities in three soils (normal, saline, and sodic). The soils used in the study were alkaline in reaction with a pH range of 7.05–8.86 and an electrical conductivity (EC) gradient from 0.41 to 2.5 dS m−1. Significant changes in the soil enzyme activity (dehydrogenase, fluorescein diacetate, and alkaline phosphatase) were observed with the incorporation of rice residue as compared to control. The enzymatic activities were substantially enhanced with a decrease in the size of the residue up to 28 days during the incubation period. The maximum enzymatic activity in the three soils was found to be in the order of normal > sodic > saline soils. These results suggest that the particle size of rice residues and salt levels should be considered important factors in residue decomposition in soils, as they directly influence the activity of soil enzymes for the overall improvement of the biological pools in soils.

Funder

King Saud University

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3