Affiliation:
1. College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China
2. Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China
3. Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, Hohhot 010019, China
4. Agricultural Technology Extension Centre, Tumert Right Banner, Baotou 014400, China
Abstract
Maize is essential in ensuring food security in China as a primary food and feed crop. One of the main ways to increase yield in maize production systems is to increase planting density as appropriate. Clarifying the relationship between planting density and grain nutritional quality can provide theoretical guidance for high-yielding high-quality maize cultivation and management practices. To this end, five representative high-yielding maize varieties from the 1970s to the 2010s in China were used as experimental material, and two planting densities of 45,000 plants hm−2 and 105,000 plants hm−2 were set to analyze the changing patterns of yield traits and grain nutrient quality of maize varieties in different eras, as well as their responses to densification conditions. The results showed that, under low-density conditions, the grain nutrient quality components of the 2010s’ variety (DH618) were all different 75 days after anthesis compared with the 1970s’–2000s’ varieties and yields also significantly increased by 11.15% to 19.18% (p < 0.05). The increase in planting density led to a rise in total grain starch and soluble sugar content 75 days post-anthesis in all varieties from the 1970s to the 2010s, with increases of 0.65–1.65% and 39.44–69.01%, and a decrease in crude grain protein and crude fat content, with reductions of 4.15–8.50% and 3.00–11.18%. The increase in total grain starch content 75 days post-anthesis was mainly due to the rise in grain starch accumulation between 23 and 47 days post-anthesis in the 1970s’–2010s’ varieties, with an increase of 7.72–9.19% in all varieties. The higher accumulation of crude fat and soluble sugar in the 0–23 days post-anthesis period also contributed to the increase in total starch accumulation in the 23–47 days post-anthesis period. Ultimately, densification conditions also contributed to a significant increase in yield across all eras of the varieties based on changes in grain nutritional quality, with a more significant increase in yield due to densification and a smaller decrease in grain crude fat content due to densification 75 days after anthesis in the 2010s’ variety (DH618). Therefore, in cultivation and production processes that do not have specific requirements for the nutritional quality components of maize grain, we suggest that the use of a representative high-yielding maize variety (DH618) from the 2010s, together with appropriate planting at close planting distances, can significantly increase maize yields based on an increase in the total starch content of the grain at physiological maturity.
Funder
National Maize Industrial Technology Systems
Key Program of Action Plan to Revitalize Inner Mongolia through Science and Technology
Science and Technology Innovation Projects for High Yield and Efficiency of Grain
Key Laboratory of Crop Cultivation and Genetic Improvement of Inner Mongolia Autonomous Region
Inner Mongolia Science and Technology Major Special Project
Program for Improving the Scientific Research Ability of Youth Teachers of Inner Mongolia Agricultural University
Natural Science Foundation of Inner Mongolia
Crop Science Observation and Experiment Station in Loess Plateau of North China, Ministry of Agriculture, P.R. of China
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献