Data-Driven Soil Analysis and Evaluation for Smart Farming Using Machine Learning Approaches

Author:

Huang Yixin1,Srivastava Rishi1,Ngo Chloe1,Gao Jerry2ORCID,Wu Jane3,Chiao Sen4ORCID

Affiliation:

1. Applied Data Science Department, San Jose State University, San Jose, CA 95192, USA

2. 3iCloud, San Jose State University, San Jose, CA 95192, USA

3. 3iCloud.Co and BRI Captial Inc., San Francisco, CA 94104, USA

4. NOAA Center for Atmospheric Sciences and Meteorology, Howard University, Washington, DC 20059, USA

Abstract

Food shortage issues affect more and more of the population globally as a consequence of the climate crisis, wars, and the COVID-19 pandemic. Increasing crop output has become one of the urgent priorities for many countries. To raise the productivity of the crop product, it is necessary to monitor and evaluate farmland soil quality by analyzing the physical and chemical properties of soil since the soil is the base to provide nutrition to the crop. As a result, soil analysis contributes greatly to maintaining the sustainability of soil in producing crops regularly. Recently, some agriculture researchers have started using machine learning approaches to conduct soil analysis, targeting the different soil analysis needs separately. The optimal method is to consider all those features (climate, soil chemicals, nutrition, and geolocations) based on the growing crops and production cycle for soil analysis. The contribution of this project is to combine soil analysis, including crop identification, irrigation recommendations, and fertilizer analysis, with data-driven machine learning models and to create an interactive user-friendly system (Soil Analysis System) by using real-time satellite data and remote sensor data. The system provides a more sustainable and efficient way to help farmers harvest with better usages of land, water, and fertilizer. According to our analysis results, this combined approach is promising and efficient for smart farming.

Funder

U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Educational Partnership Program

Professor NOAA Center for Atmospheric Sciences and Meteorology, Howard University

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3